化工学报

• •    

基于动态残差补偿的工业时序数据故障检测模型

吉鲁东1(), 朱春梦1,2, 柳楠1, 郭建豪1, 赵云鹏1, 石孝刚1, 蓝兴英1()   

  1. 1.中国石油大学(北京)重质油全国重点实验室,北京 102249
    2.中国石油大学(北京)人工智能学院,北京 102249
  • 收稿日期:2025-11-11 修回日期:2026-01-19 出版日期:2026-01-21
  • 通讯作者: 蓝兴英
  • 作者简介:吉鲁东(2000—),男,硕士研究生,2024210539@student.cup.edu.cn
  • 基金资助:
    国家重点研发计划项目(2024YFE0212400)

Industrial time series data fault detection model based on dynamic residual correction

Ludong JI1(), Chunmeng ZHU1,2, Nan LIU1, Jianhao GUO1, Yunpeng ZHAO1, Xiaogang SHI1, Xingying LAN1()   

  1. 1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
    2.College of Artificial Intelligence, China University of Petroleum (Beijing), Beijing 102249, China
  • Received:2025-11-11 Revised:2026-01-19 Online:2026-01-21
  • Contact: Xingying LAN

摘要:

为应对化工过程因动态特性、强非线性与复杂时空耦合导致传统故障检测模型精度低且动态适应性差的难题,提出一种基于动态残差补偿的工业时序数据故障检测模型(Dynamic Residual Compensation-based Detection Model, DRCDM)。DRCDM利用卷积神经网络-双向长短期记忆网络(CNN-BiLSTM)挖掘时序数据的时空依赖关系并进行初步预测,随后构建包含原始数据统计量、基础模型预测值和历史残差的动态统计量的增强元特征集,再驱动XGBoost对预测偏差实时建模与修正。在田纳西-伊斯曼(TE)过程及某280万吨/年催化裂化(FCC)装置运行数据的实验表明,动态残差补偿能够有效实现偏差的实时修正,显著提升DRCDM故障检测的准确性和可靠性。

关键词: 故障检测, 动态残差补偿, 时序数据, 元特征集, TE过程, FCC

Abstract:

This paper addresses the challenge that traditional fault detection models fail to simultaneously achieve high precision and dynamic adaptability due to the inherent dynamic characteristics, strong nonlinearity, and complex spatiotemporal coupling of chemical processes. Therefore, we propose a dynamic residual compensation-based detection model for fault detection in industrial time-series data. The proposed DRCDM operates by first capturing the spatio-temporal dependencies within time series data to generate preliminary predictions. Subsequently, it constructs an enhanced meta-feature set that incorporates raw data statistics, predictions from the base model, and dynamic historical residual statistics to drive XGBoost for real-time modeling and correction of prediction deviations. The effectiveness of DRCDM is validated using the Tennessee-Eastman (TE) process dataset, along with industrial operational data from a 2.8×106 tons/year fluid catalytic cracking (FCC) unit, with performance comparisons made against several established methods. The results demonstrate that dynamic residual compensation achieves real-time deviation correction, thereby significantly improving the accuracy and reliability of fault detection in DRCDM.

Key words: fault detection, dynamic residual compensation, time series data, meta-feature set, TE process, FCC

中图分类号: