[1] |
王健, 冯健, 韩志艳. 基于流形学习的局部保持PCA算法在故障检测中的应用[J]. 控制与决策, 2013, 28 (5): 683-687. DOI:10.13195/j.cd.2013.05.46.wangj.025. WANG J, FENG J, HAN Z Y. Locally preserving PCA method based on manifold learning and its application in fault detection[J]. Control and Decision, 2013, 28 (5): 683-687. DOI: 10.13195/j.cd.2013.05.46. wangj.025.
|
[2] |
王晶, 刘莉, 曹柳林, 等. 基于核Fisher包络分析的间歇过程故障诊断[J]. 化工学报, 2014, 65 (4): 1317-1326. DOI: 10.3969/j.issn.0438-1157.2014.04.023. WANG J, LIU L, CAO L L, et al. Fault diagnosis based on kernel Fisher envelope surface for batch processes[J]. CIESC Journal, 2014, 65 (4): 1317-1326. DOI: 10.3969/j.issn.0438-1157.2014.04.023.
|
[3] |
JIANG Q C, YAN X F. Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA[J]. Journal of Process Control, 2015, 32 (1): 38-50. DOI: 10.1016/j.jprocont.2015.04.014
|
[4] |
张妮, 田学民, 蔡连芳. 基于RISOMAP的非线性过程故障检测方法[J]. 化工学报, 2013, 64 (6): 2125-2130. DOI: 10.3969/j.issn.0438-1157.2013.06.031. ZHANG N, TIAN X M, CAI L F. Non-linear process fault detection method based on RISOMAP[J]. CIESC Journal, 2013, 64 (6): 2125-2130. DOI: 10.3969/j.issn.0438-1157.2013.06.031.
|
[5] |
YANG X F, GOH A, QIU A Q. Locally linear diffeomorphic metric embedding (LLDME) for surface-based anatomical shape modeling[J]. Neuroimage, 2011, 56 (1): 149-161. 10.1016/j.neuroimage.2011.01.069.
|
[6] |
MIAO A M, GE Z Q, SONG Z H, et al. Nonlocal structure constrained neighborhood preserving embedding model and Its application for fault detection[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 142: 184-196. DOI:10.1016/j.chemolab. 2015.01.010.
|
[7] |
JING C, YANG L. Locally linear embedding: a survey[J]. Artificial Intelligence Review, 2011, 36 (1): 29-48. DOI: 10.1007/s10462-010-9200-z.
|
[8] |
SHAN R F, CAI W S, SHAO X G. Variable selection based on locally linear embedding mapping for near-infrared spectral analysis[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 131: 31-36. DOI:10.1016/j.chemolab.2013.12.002.
|
[9] |
SLUBAN B, LAVRA? N. Relating ensemble diversity and performance: a study in class noise detection[J]. Neurocomputing, 2015, 160: 120-131. DOI: 10.1016/j.neucom.2014.10.086.
|
[10] |
XIE X X, HU J Z, XU F Y, et al. A fault diagnosis method using multi-manifold learning based on locally linear embedding[J]. Chinese Journal of Mechanical Engineering, 2013, 49 (11): 79-83. DOI: 10.3901/JME.2013.11.079.
|
[11] |
ANDRÉS Á-M, JULIANA V-A, GENARO D-S, et al. Global and local choice of the number of nearest neighbors in locally linear embedding[J]. Pattern Recognition Letters, 2011, 32 (16): 2171-2177. DOI: 10.1016/j.patrec.2011.05.011.
|
[12] |
WANG J. Real local-linearity preserving embedding[J]. Neurocomputing, 2014, 136 (20): 7-13. DOI: 10.1016/j.neucom.2014. 01.040.
|
[13] |
HETTIARACHCHI R, PETERS J F. Multi-manifold LLE learning in pattern recognition[J]. Pattern Recognition, 2015, 48 (9): 2947-2960. DOI: 10.1016/j.patcog.2015.04.003.
|
[14] |
马玉鑫, 王梦灵, 侍洪波. 基于局部线性嵌入算法的化工过程故障检测[J]. 化工学报, 2012, 63 (7): 2121-2127. DOI: 10.3969/j.issn. 0438-1157.2012.07.018. MA Y X, WANG M L, SHI H B. Fault detection for chemical process based on locally linear embedding[J]. CIESC Journal, 2012, 63 (7): 2121-2127. DOI: 10.3969/j.issn.0438-1157. 2012.07.018.
|
[15] |
LI B W, ZHANG Y. Supervised locally linear embedding projection (SLLEP) for machinery fault diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25 (8): 3125-3134. DOI: 10.1016/j.ymssp. 2011.05.001.
|
[16] |
周世兵, 徐振源, 唐旭清. 新的k均值算法最佳聚类数确定方法[J]. 计算机工程与应用, 2010, 46 (16): 27-31. DOI: 10.3778/j.issn.1002-8331.2010.16.008. ZHOU S B, XU Z Y, TANG X Q. New method for determining optimal number of clusters in k-means clustering algorithm[J]. Computer Engineering and Applications, 2010, 46 (16): 27-31. DOI: 10.3778/j.issn.1002-8331.2010.16.008.
|
[17] |
ZHOU C Y, CHEN Y Q. Improving nearest neighbor classification with cam weighted distance[J]. Pattern Recognition, 2006, 39 (4): 635-645. DOI: 10.1016/j.patcog.2005.09.004.
|
[18] |
SAKTHIVEL N R, NAIR B B, ELANGOVAN M, et al. Full length article: comparison of dimensionality reduction techniques for the fault diagnosis of mono block centrifugal pump using vibration signals[J]. Engineering Science and Technology, 2014, 17 (1): 30-38. DOI: 10.1016/j.jestch.2014.02.005.
|
[19] |
CHEN H H, TI?O P, YAO X. Cognitive fault diagnosis in Tennessee Eastman process using learning in the model space[J]. Computers and Chemical Engineering, 2014, 67: 33-42. DOI: 10.1016/j.compchemeng. 2014.03. 015.
|
[20] |
宋冰, 马玉鑫, 方永锋, 等. 基于LSNPE 算法的化工过程故障检测[J]. 化工学报, 2014, 65 (2): 620-627. DOI: 10.3969/j.issn.0438-1157.2014.02.036. SONG B, MA Y X, FANG Y F, et al. Fault detection for chemical process based on LSNPE method[J]. CIESC Journal, 2014, 65 (2): 620-627. DOI: 10.3969/j.issn.0438-1157.2014.02.036.
|