化工学报 ›› 2017, Vol. 68 ›› Issue (5): 1860-1865.doi: 10.11949/j.issn.0438-1157.20161739

• 流体力学与传递现象 • 上一篇    下一篇

多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能实验

赵惠忠1, 程俊峰1, 唐祥虎1, 张少波2   

  1. 1 上海海事大学商船学院, 上海 201306;
    2 东南大学能源与环境学院, 江苏 南京 210096
  • 收稿日期:2016-12-12 修回日期:2017-02-15 出版日期:2017-05-05 发布日期:2017-05-05
  • 通讯作者: 赵惠忠 E-mail:hzzhao@shmtu.edu.cn
  • 基金资助:

    上海市教育委员会科研创新重点项目(13ZZ121);国家自然科学基金面上项目(50976073)。

Performance of multi wall carbon nanotubes embedded 13X/MgCl2 composite adsorbent

ZHAO Huizhong1, CHENG Junfeng1, TANG Xianghu1, ZHANG Shaobo2   

  1. 1 College of Merchant Marine, Shanghai Maritime University, Shanghai 201306, China;
    2 School of Energy and Environment, Southeast University, Nanjing 210096, Jiangsu, China
  • Received:2016-12-12 Revised:2017-02-15 Published:2017-05-05 Online:2017-05-05
  • Supported by:

    supported by Innovation Program of Shanghai Municipal Education commission(13ZZ121) and the National Natural Science Foundation of China (50976073).

摘要:

配制了将不同含量的多壁碳纳米管(MWCNT)加入复合吸附剂13X/MgCl2中制成的新型复合吸附剂,并对其吸附、脱附和导热性能进行了测试。实验结果表明:新型复合吸附剂在闭式200℃脱附完成后,新型复合吸附剂的吸附残余量随着MWCNT含量的升高而减小,13X的吸附残余量是MWCNT含量最高的13X/MgCl2/MWCNT(CNT-5)复合吸附剂的吸附残余量的2倍,虽然MWCNT的加入不会对13X/MgCl2复合吸附剂在室温下的吸附性能有影响,CNT-5在开式、闭式的平衡吸附量可以达到0.52 g·g-1和0.38 g·g-1,分别是13X吸附量(0.24 g·g-1)的2.2和1.6倍,但新型复合吸附剂可以脱附更多的水蒸气。新型复合吸附剂的热导率随着MWCNT含量的增大而升高,CNT-5的热导率可以达到0.265 W·m-1·K-1,是13X热导率的4.9倍。

关键词: 复合吸附剂, 平衡吸附量, 热导率, 多壁碳纳米管, 吸附式制冷

Abstract:

A series of new composite adsorbents with different MWCNT mass embedded zeolite 13X/MgCl2 composite adsorbents were prepared, and the adsorption performance、desorption performance and thermal conductivity were measured. The experimental results show: Under the condition of the closed system in the 200℃, the residual adsorption of the new composite adsorbent decreases with the increase of the MWCNT content. And the residual adsorption of 13X is 2 times of 13X/MgCl2/MWCNT(CNT-5). The addition of MWCNT does not have noticeable influence on adsorption capacity at ambient temperature. The equilibrium adsorption capacity of CNT-5 could reach 0.52 and 0.38 g·g-1 in the open and closed system, respectively. And they were 2.2 and 1.6 times of 13X which equilibrium adsorption capacity is 0.24 g·g-1.The new composite adsorbent can desorb more water vapor. The thermal conductivity of the new composite adsorbent increases with the increase of MWCNT content, the thermal conductivity of CNT-5 can reach 0.265 W·m-1·K-1, which is 4.9 times of the 13X's thermal conductivity.

Key words: composite adsorbent, equilibrium adsorption capacity, thermal conductivity, MWCNT, adsorption refrigeration

中图分类号: 

  • TB64
[1] 王如竹, 王丽伟. 低品位热能驱动的绿色制冷技术: 吸附式制冷[J]. 科学通报, 2005, 50(2): 101-111. WANG R Z, WANG L W. Adsorption refrigeration green cooling driven by low grade thermal energy[J]. Chin. Sci. Bull, 2005, 50(2): 193-204.
[2] 姜周曙, 王如竹, 卢允庄, 等. 吸附—吸收复叠式三效制冷循环[J]. 化工学报, 2002, 53(6): 566-571. JIANG Z S, WANG R Z, LU Y Z, et al. Adsorption-absorption cascading triple-effect refrigeration cycle[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(6): 566-571.
[3] 徐圣知, 王丽伟, 王如竹. 回质回热吸附式制冷循环的热力学分析与方案优选[J]. 化工学报, 2016, 67(6): 2202-2210. XU S Z, WANG L W, WANG R Z. Thermodynamic analysis of mass and heat recovery adsorption refrigeration cycles and scheme selection[J]. CIESC Journal, 2016, 67(6): 2202-2210.
[4] 罗伟莉, 王健, 王丽伟, 等. 采用SrCl2-NH4Cl-NH3工质对的二级吸附式冷冻循环性能[J]. 化工学报, 2012, 63(4): 1004-1010. LUO W L, WANG J, WANG L W, et al. Performance of two-stage adsorption freezing cycle with SrCl2-NH4Cl-NH3[J]. CIESC Journal, 2012, 63(4): 1004-1010.
[5] 刘艳玲, 王如竹, 夏再忠. 一种新型太阳能吸附式制冷系统的设计及性能模拟[J]. 化工学报, 2005, 56(5): 791-795. LIU Y L, WANG R Z, XIA Z Z. Design and performance simulation of continuous solar powered adsorption air conditioning system[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(5): 791-795.
[6] HADJ A M A, BENHAOUA B, BOURAS F. Thermodynamic analysis and performance of an adsorption refrigeration system driven by solar collector[J]. Applied Thermal Engineering, 2017, 112: 1289-1296.
[7] XU S Z, WANG L W, WANG R Z. Thermodynamic analysis of single-stage and multi-stage adsorption refrigeration cycles with activated carbon-ammonia working pair[J]. Energy Conversion and Management, 2016, 117: 31-42.
[8] LI W L, JOSHI C, XU P, et al. Experimental study on adsorption refrigeration system with stratified storage — analysis of storage discharge operation[J]. Procedia Engineering, 2016, 146: 624-630.
[9] SADEGHLU A, YARI M, DIZAJI H B. Simulation study of a combined adsorption refrigeration system[J]. Applied Thermal Engineering, 2015, 87: 185-199.
[10] BOUZEFFOUR F, KHELIDJ B, ABBES M T. Experimental investigation of a solar adsorption refrigeration system working with silicagel/water pair: a case study for bou-ismail solar data[J]. Solar Energy, 2016, 131: 165-175.
[11] BOER R D, SMEDING S F, GRISEL R J H. Development and testing of a sorbent filled heat exchanger for use in compact solid sorption cooling systems[C]//Proceedings of International Sorption Heat Pump Conference, Denver, USA, 2005.
[12] MAHDAVIKHAH M, NIAZMAND H. Effects of plate finned heat exchanger parameters on the adsorption chiller performance[J]. Applied Thermal Engineering, 2013, 50(1): 939-949.
[13] WOJCIK A M W, JANSEN J C, MASCHMEYER T. Regarding pressure in the adsorber of an adsorption heat pump with thin synthesized zeolite layers on heat exchangers[J]. Microporous Mesoporous Materials, 2001, 43(3): 313-317.
[14] RESTUCCIA G, CACCIOLA G. Performance of adsorption systems for ambient heating and air conditioning[J]. International Journal of Refrigeration, 1999, 22(1): 18-26.
[15] CHAN K C, CHAO C Y H, BAHRAMI M. Heat and mass transfer characteristics of a zeolite 13X/CaCl2 composite adsorbent in adsorption cooling systems[C]//ASME 2012 6th International Conference on Energy Sustainability. Issue Parts A and B, 2012: 49-58.
[16] FRENI A, MAGGIO G, SAPIENZA A, et al. Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration[J]. Applied Thermal Engineering, 2016, 104: 85-95.
[17] EI-SHARKAWY I I, PAL A, MIYAZAKI T, et al. A study on consolidated composite adsorbents for cooling application[J]. Applied Thermal Engineering, 2016, 98: 1214-1220.
[18] 赵惠忠, 刘震炎, 张敏, 等. 瞬时热探针法测量沸石复合吸附剂热导率[J]. 上海交通大学学报, 2007, 41(3): 437-441. ZHAO H Z, LIU Z Y, ZHANG M, et al. The measurement of thermal conductivity of compound adsorbent used by thermal probe[J]. Journal of Shanghai Jiao Tong University, 2007, 41(3): 437-441.
[19] 赵惠忠, 张敏, 刘震炎, 等. 基于13X沸石的新型制冷复合吸附剂性能[J]. 化工学报, 2007, 58(5): 1150-1154. ZHAO H Z, ZHANG M, LIU Z Y, et al. Performance of novel 13X zeolite based refrigerant compound adsorbent[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(5): 1150-1154.
[20] 卢允庒, 刘震炎. NaX沸石复合吸附剂的性能与应用[J]. 上海交通大学学报, 2001, 35(5): 729-732. LU Y Z, LIU Z Y. Performance investigation and application of the zeolite NaX composite adsorbent[J]. Journal of Shanghai Jiao Tong University, 2001, 35(5): 729-732.
[21] 刘震炎, 赵惠忠, 徐海峰, 等. 太阳能冷管的机理与结构改进实验[J]. 上海交通大学学报, 2004, 38(10): 1635-1638. LIU Z Y, ZHAO H Z, XU H F, et al. Experimental research of mechanism and structure performance of solar cooling tube[J]. Journal of Shanghai Jiao Tong University, 2004, 38(10): 1635-1638.
[22] HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review[J]. Progress in Polymer Science, 2011, 36(7) : 914-944.
[23] HEPPLESTONE S P, CIAVARELLA A M, JANKE C, et al. Size and temperature dependence of the specific heat capacity of carbon nanotubes[J]. Surface Science, 2006, 600(18): 3633-3636.
[24] STRIOLO A, NAICKER P K, CHIALVO A A, et al. Simulated water adsorption isotherms in hydrophilic and hydrophobic cylindrical nanopores[J]. Adsorption—Journal of the International Adsorption Society, 2005, 11(1): 397-401.
[25] CHAN K C, CHAO C Y H. A theoretical model on the effective stagnant thermal conductivity of an adsorbent embedded with a highly thermal conductive material[J]. International Journal Heat Mass Transfer, 2013, 65(5): 863-872.
[26] CHAN K C, CHAO C Y H, WU C L. Measurement of properties and performance prediction of the new MWCNT-embedded zeolite 13X/CaCl2 composite adsorbents[J]. International Journal of Heat and Mass Transfer, 2015, 89: 308-319.
[27] YAN T, LI T X, WANG R Z, et al. Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes[J]. Applied Thermal Engineering, 2015, 77: 20-29.
[28] YAN T, LI T X, WANG R Z, et al. Experimental study of the ammonia adsorption characteristics on the composite sorbent of CaCl2 and multi-walled carbon nanotubes[J]. International Journal of Refrigation, 2014, 46: 165-172.
[29] 赵惠忠, 唐祥虎, 严浩鑫, 等. 基于13X沸石分子筛/MgCl2的复合吸附剂性能实验研究[J]. 制冷学报, 2016, 37(5): 50-56. ZHAO H Z, TANG X H, YAN H X, et al. Experimental study on composite adsorbent performance of zeolite 13X/MgCl2[J]. Journal of Refrigeration, 2016, 37(5): 50-56.
[30] CHAN K C, CHAO C Y H, SZE-TO G N, et al. Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 3214-3224.
[1] 石兴达, 陈华艳, 戈亚南, 武春瑞, 贾红友, 吕晓龙. 低界面热阻改性氮化铝和多壁碳纳米管充填PVDF构建杂化三维网络及其导热性能强化[J]. 化工学报, 2022, 73(5): 2262-2269.
[2] 梁恒, 刘益才, 汪谦旭, 赵祥乐, 李政. 开孔泡沫金属复合材料有效热导率的研究进展[J]. 化工学报, 2021, 72(S1): 7-20.
[3] 邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
[4] 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772.
[5] 杨振, 姚元鹏, 吴慧英. 基于导热形状因子的泡沫金属导热特性分析[J]. 化工学报, 2021, 72(3): 1295-1301.
[6] 田军鹏, 沈圆辉, 张东辉, 唐忠利. 规整复合吸附剂真空变压吸附分离CH4/N2工艺模拟与分析[J]. 化工学报, 2021, 72(11): 5675-5685.
[7] 田东民, 吴延鹏, 陈凤君. 基于纳米增强相变材料的铜-水热管传热性能分析[J]. 化工学报, 2020, 71(S1): 220-226.
[8] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[9] 田宜聪, 高娇, 李云飞, 王丽伟, 安国亮. 发动机尾气余热驱动的吸附式空调系统仿真与测试[J]. 化工学报, 2020, 71(8): 3691-3698.
[10] 石彦, 赵君文, 袁艳平, 戴光泽, 韩靖. Cu含量对Al-Cu-Si合金相变储热性能的影响[J]. 化工学报, 2020, 71(5): 2017-2023.
[11] 刘明, 徐哲. 甲烷水合物声子导热及量子修正[J]. 化工学报, 2020, 71(4): 1424-1431.
[12] 文爽, 齐宏, 刘少斌, 任亚涛, 阮立明. 基于EKF和UKF算法非均匀介质热物性参数重建[J]. 化工学报, 2020, 71(4): 1432-1439.
[13] 马奕新, 金宇, 张虎, 王娴, 唐桂华. 翅片重力热管传热性能实验研究[J]. 化工学报, 2020, 71(2): 594-601.
[14] 刘万强,杨帆,袁华,张远达,易平贵,周虎. 醇类有机物热传导的分子动力学模拟及微观机理研究[J]. 化工学报, 2020, 71(11): 5159-5168.
[15] 于帆,张欣欣. 脉冲式平面热源法测量材料热导率和热扩散率的分析与实验[J]. 化工学报, 2019, 70(S2): 70-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!