化工学报 ›› 2021, Vol. 72 ›› Issue (11): 5675-5685.DOI: 10.11949/0438-1157.20210650
收稿日期:
2021-05-13
修回日期:
2021-07-09
出版日期:
2021-11-05
发布日期:
2021-11-12
通讯作者:
张东辉
作者简介:
田军鹏(1996—),男,硕士研究生,基金资助:
Junpeng TIAN(),Yuanhui SHEN,Donghui ZHANG(),Zhongli TANG
Received:
2021-05-13
Revised:
2021-07-09
Online:
2021-11-05
Published:
2021-11-12
Contact:
Donghui ZHANG
摘要:
为减少甲烷排放,实现低浓度煤层气有效资源化利用,探究了使用规整复合吸附剂真空变压吸附富集低浓度煤层气的工艺。采用静态容积法测定了甲烷、氮气在规整复合吸附剂上的吸附等温线,同时建立了包括质量、热量和动量守恒在内的严格吸附床数学模型,设计了三塔连续进料的真空变压吸附工艺并进行模拟。分析了工艺达到循环稳态后吸附床层轴向温度分布和压力变化,并且探究了进料量、解吸压力、原料气中甲烷浓度和吸附压力对纯度、回收率、工艺能耗和吸附剂产率等工艺性能的影响。模拟结果表明,在进料量为100 L·min-1,解吸压力为0.1 bar(1 bar=0.1 MPa),原料气甲烷浓度为30%,吸附压力为3 bar时可以生产纯度为59.07%,回收率为93.64%的富CH4产品气,同时单位能耗为18.70 kJ·mol-1,吸附剂产率为4.56 mol·h-1·kg-1。表明规整吸附剂对CH4/N2具有良好的吸附分离效果,能够实现低浓度煤层气中甲烷高效富集。
中图分类号:
田军鹏, 沈圆辉, 张东辉, 唐忠利. 规整复合吸附剂真空变压吸附分离CH4/N2工艺模拟与分析[J]. 化工学报, 2021, 72(11): 5675-5685.
Junpeng TIAN, Yuanhui SHEN, Donghui ZHANG, Zhongli TANG. Simulation and analysis of CH4/N2 separation by vacuum pressure swing adsorption with structured composite adsorption media[J]. CIESC Journal, 2021, 72(11): 5675-5685.
步骤 | 塔1 | 塔2 | 塔3 | 时间/s |
---|---|---|---|---|
1 | AD | ER | ED | 10 |
2 | AD | PR | VU | 120 |
3 | ED | AD | ER | 10 |
4 | VU | AD | PR | 120 |
5 | ER | ED | AD | 10 |
6 | PR | VU | AD | 120 |
表1 三塔VPSA循环时序
Table 1 Cycle sequence of three bed VPSA process
步骤 | 塔1 | 塔2 | 塔3 | 时间/s |
---|---|---|---|---|
1 | AD | ER | ED | 10 |
2 | AD | PR | VU | 120 |
3 | ED | AD | ER | 10 |
4 | VU | AD | PR | 120 |
5 | ER | ED | AD | 10 |
6 | PR | VU | AD | 120 |
项目 | 数学模型 | |
---|---|---|
质量平衡 | (1) | |
(2) | ||
热量平衡 | 气相 | (3) |
固相 | (4) | |
塔壁 | (5) | |
动量平衡 | (6) | |
传质速率 | (7) | |
(8) |
表2 吸附床模型方程
Table 2 The detailed mathematical model equations used in adsorption bed
项目 | 数学模型 | |
---|---|---|
质量平衡 | (1) | |
(2) | ||
热量平衡 | 气相 | (3) |
固相 | (4) | |
塔壁 | (5) | |
动量平衡 | (6) | |
传质速率 | (7) | |
(8) |
指标 | 方程 |
---|---|
纯度 | |
回收率 | |
能耗 | |
产率 |
表3 工艺性能评价指标
Table 3 Process performance indicators
指标 | 方程 |
---|---|
纯度 | |
回收率 | |
能耗 | |
产率 |
参数 | 数值 |
---|---|
Hb /m | 1.00 |
Db /m | 0.20 |
Wb /m | 0.005 |
Cpw/ (kJ·kg-1·K-1) | 0.502 |
hw/ (W·m-2·K-1) | 60 |
ρw/ (kg·m-3) | 7800 |
hamb/ (W·m-2·K-1) | 60 |
hf/(W·m-2·K-1) | 217 |
kg/(W·m-1·K-1) | 0.342 |
ks /(W·m-1·K-1) | 0.3 |
Tf /K | 298.15 |
Pf /bar | 3.0 |
表4 吸附床参数
Table 4 Parameters of adsorption bed
参数 | 数值 |
---|---|
Hb /m | 1.00 |
Db /m | 0.20 |
Wb /m | 0.005 |
Cpw/ (kJ·kg-1·K-1) | 0.502 |
hw/ (W·m-2·K-1) | 60 |
ρw/ (kg·m-3) | 7800 |
hamb/ (W·m-2·K-1) | 60 |
hf/(W·m-2·K-1) | 217 |
kg/(W·m-1·K-1) | 0.342 |
ks /(W·m-1·K-1) | 0.3 |
Tf /K | 298.15 |
Pf /bar | 3.0 |
参数 | 数值 |
---|---|
εb | 0.75 |
εp | 0.64 |
SBET/ (m2·g-1) | 880.06 |
Vt /(cm3·g-1) | 0.509 |
ρs/ (kg·m-3) | 175 |
Wa /m | 3.5×10-4 |
Cps /(kJ·kg-1·K-1) | 0.857 |
表5 规整复合吸附剂参数
Table 5 Parameters of structured composite adsorption media adsorbent
参数 | 数值 |
---|---|
εb | 0.75 |
εp | 0.64 |
SBET/ (m2·g-1) | 880.06 |
Vt /(cm3·g-1) | 0.509 |
ρs/ (kg·m-3) | 175 |
Wa /m | 3.5×10-4 |
Cps /(kJ·kg-1·K-1) | 0.857 |
参数 | CH4 | N2 |
---|---|---|
IP1/(mol·kg-1·kPa-1) | 1.32×10-8 | 9.75×10-7 |
IP2/K | 2476 | 2186 |
IP3/kPa-1 | 2.84×10-7 | 2.59×10-6 |
IP4 /K | 2726 | 1740 |
ΔH/(kJ·mol-1) | -19.05 | -15.93 |
表6 Extended Langmuir 2吸附等温线方程参数
Table 6 The parameters of Extended Langmuir 2 model by fitting
参数 | CH4 | N2 |
---|---|---|
IP1/(mol·kg-1·kPa-1) | 1.32×10-8 | 9.75×10-7 |
IP2/K | 2476 | 2186 |
IP3/kPa-1 | 2.84×10-7 | 2.59×10-6 |
IP4 /K | 2726 | 1740 |
ΔH/(kJ·mol-1) | -19.05 | -15.93 |
工况 | 进料量/ (L·min-1) | 吸附压力/ bar | 解吸压力/ bar | 原料气甲烷 浓度/% | CH4纯度/% | CH4回收率/% | 能耗/(kJ·mol-1) | 产率/ (mol·h-1·kg-1) |
---|---|---|---|---|---|---|---|---|
1 | 80 | 3 | 0.1 | 30 | 52.28 | 98.95 | 18.46 | 3.86 |
2 | 90 | 3 | 0.1 | 30 | 56.04 | 96.81 | 18.54 | 4.25 |
3 | 100 | 3 | 0.1 | 30 | 59.07 | 93.64 | 18.70 | 4.56 |
4 | 110 | 3 | 0.1 | 30 | 61.48 | 90.45 | 18.95 | 4.85 |
5 | 120 | 3 | 0.1 | 30 | 63.16 | 85.89 | 19.57 | 5.02 |
6 | 130 | 3 | 0.1 | 30 | 64.71 | 82.37 | 20.05 | 5.22 |
7 | 140 | 3 | 0.1 | 30 | 66.08 | 79.02 | 20.59 | 5.39 |
8 | 100 | 3 | 0.05 | 30 | 59.54 | 96.36 | 19.32 | 4.70 |
9 | 100 | 3 | 0.075 | 30 | 59.23 | 94.56 | 18.92 | 4.61 |
10 | 100 | 3 | 0.125 | 30 | 58.72 | 90.73 | 18.34 | 4.42 |
11 | 100 | 3 | 0.15 | 30 | 58.28 | 88.07 | 18.32 | 4.29 |
12 | 100 | 3 | 0.175 | 30 | 57.91 | 85.94 | 18.30 | 4.19 |
13 | 100 | 3 | 0.20 | 30 | 57.56 | 84.69 | 18.25 | 4.13 |
14 | 100 | 3 | 0.1 | 10 | 26.16 | 95.28 | 52.78 | 1.55 |
15 | 100 | 3 | 0.1 | 15 | 37.11 | 94.32 | 35.75 | 2.30 |
16 | 100 | 3 | 0.1 | 20 | 45.32 | 93.92 | 27.02 | 3.05 |
17 | 100 | 3 | 0.1 | 25 | 52.81 | 93.75 | 21.69 | 3.81 |
18 | 100 | 3 | 0.1 | 35 | 65.05 | 93.55 | 16.33 | 5.32 |
19 | 100 | 3 | 0.1 | 40 | 70.41 | 93.48 | 14.65 | 6.08 |
20 | 100 | 1 | 0.1 | 30 | 40.23 | 90.34 | 9.66 | 4.40 |
21 | 100 | 5 | 0.1 | 30 | 68.76 | 92.81 | 38.37 | 4.52 |
表7 三塔VPSA模拟结果
Table 7 The simulation results of three bed VPSA process
工况 | 进料量/ (L·min-1) | 吸附压力/ bar | 解吸压力/ bar | 原料气甲烷 浓度/% | CH4纯度/% | CH4回收率/% | 能耗/(kJ·mol-1) | 产率/ (mol·h-1·kg-1) |
---|---|---|---|---|---|---|---|---|
1 | 80 | 3 | 0.1 | 30 | 52.28 | 98.95 | 18.46 | 3.86 |
2 | 90 | 3 | 0.1 | 30 | 56.04 | 96.81 | 18.54 | 4.25 |
3 | 100 | 3 | 0.1 | 30 | 59.07 | 93.64 | 18.70 | 4.56 |
4 | 110 | 3 | 0.1 | 30 | 61.48 | 90.45 | 18.95 | 4.85 |
5 | 120 | 3 | 0.1 | 30 | 63.16 | 85.89 | 19.57 | 5.02 |
6 | 130 | 3 | 0.1 | 30 | 64.71 | 82.37 | 20.05 | 5.22 |
7 | 140 | 3 | 0.1 | 30 | 66.08 | 79.02 | 20.59 | 5.39 |
8 | 100 | 3 | 0.05 | 30 | 59.54 | 96.36 | 19.32 | 4.70 |
9 | 100 | 3 | 0.075 | 30 | 59.23 | 94.56 | 18.92 | 4.61 |
10 | 100 | 3 | 0.125 | 30 | 58.72 | 90.73 | 18.34 | 4.42 |
11 | 100 | 3 | 0.15 | 30 | 58.28 | 88.07 | 18.32 | 4.29 |
12 | 100 | 3 | 0.175 | 30 | 57.91 | 85.94 | 18.30 | 4.19 |
13 | 100 | 3 | 0.20 | 30 | 57.56 | 84.69 | 18.25 | 4.13 |
14 | 100 | 3 | 0.1 | 10 | 26.16 | 95.28 | 52.78 | 1.55 |
15 | 100 | 3 | 0.1 | 15 | 37.11 | 94.32 | 35.75 | 2.30 |
16 | 100 | 3 | 0.1 | 20 | 45.32 | 93.92 | 27.02 | 3.05 |
17 | 100 | 3 | 0.1 | 25 | 52.81 | 93.75 | 21.69 | 3.81 |
18 | 100 | 3 | 0.1 | 35 | 65.05 | 93.55 | 16.33 | 5.32 |
19 | 100 | 3 | 0.1 | 40 | 70.41 | 93.48 | 14.65 | 6.08 |
20 | 100 | 1 | 0.1 | 30 | 40.23 | 90.34 | 9.66 | 4.40 |
21 | 100 | 5 | 0.1 | 30 | 68.76 | 92.81 | 38.37 | 4.52 |
1 | Lavoie T N, Shepson P B, Gore C A, et al. Assessing the methane emissions from natural gas-fired power plants and oil refineries[J]. Environmental Science & Technology, 2017, 51(6): 3373-3381. |
2 | Gu M, Zhang B, Qi Z D, et al. Effects of pore structure of granular activated carbons on CH4 enrichment from CH4/N2 by vacuum pressure swing adsorption[J]. Separation and Purification Technology, 2015, 146: 213-218. |
3 | Bello G, Garcı́a R, Arriagada R, et al. Carbon molecular sieves from Eucalyptus globulus charcoal[J]. Microporous and Mesoporous Materials, 2002, 56(2): 139-145. |
4 | Kim J, Maiti A, Lin L C, et al. New materials for methane capture from dilute and medium-concentration sources[J]. Nature Communications, 2013, 4: 1694. |
5 | Howarth R W. A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas[J]. Energy Science & Engineering, 2014, 2(2): 47-60. |
6 | Saleman T L, Li G, Rufford T E, et al. Capture of low grade methane from nitrogen gas using dual-reflux pressure swing adsorption[J]. Chemical Engineering Journal, 2015, 281: 739-748. |
7 | Effendy S, Xu C, Farooq S. Optimization of a pressure swing adsorption process for nitrogen rejection from natural gas[J]. Industrial & Engineering Chemistry Research, 2017, 56(18): 5417-5431. |
8 | Gao T, Lin W S, Gu A Z, et al. Coalbed methane liquefaction adopting a nitrogen expansion process with propane pre-cooling[J]. Applied Energy, 2010, 87(7): 2142-2147. |
9 | Baker R W, Lokhandwala K. Natural gas processing with membranes: an overview[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109-2121. |
10 | Lokhandwala K A, Pinnau I, He Z J, et al. Membrane separation of nitrogen from natural gas: a case study from membrane synthesis to commercial deployment[J]. Journal of Membrane Science, 2010, 346(2): 270-279. |
11 | Carreon M A. Molecular sieve membranes for N2/CH4 separation[J]. Journal of Materials Research, 2018, 33(1): 32-43. |
12 | Bhadra S J, Farooq S. Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14030-14045. |
13 | Rufford T E, Smart S, Watson G C Y, et al. The removal of CO2 and N2 from natural gas: a review of conventional and emerging process technologies[J]. Journal of Petroleum Science and Engineering, 2012, 94/95: 123-154. |
14 | Zhong D L, Daraboina N, Englezos P. Recovery of CH4 from coal mine model gas mixture (CH4/N2) by hydrate crystallization in the presence of cyclopentane[J]. Fuel, 2013, 106: 425-430. |
15 | Ning X, Koros W J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation[J]. Carbon, 2014, 66: 511-522. |
16 | Yang J F, Tang X, Liu J Q, et al. Down-sizing the crystal size of ZK-5 zeolite for its enhanced CH4 adsorption and CH4/N2 separation performances[J]. Chemical Engineering Journal, 2021, 406: 126599. |
17 | Jiang N, Shen Y H, Liu B, et al. CO2 capture from dry flue gas by means of VPSA, TSA and TVSA[J]. Journal of CO2 Utilization, 2020, 35: 153-168. |
18 | Wu T B, Niu Z Y, Feng L, et al. Performance analysis of VPSA process for separating N2O from adipic acid tail gas[J]. Separation and Purification Technology, 2021, 256: 117750. |
19 | Canevesi R L S, Andreassen K A, da Silva E A, et al. Pressure swing adsorption for biogas upgrading with carbon molecular sieve[J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 8057-8067. |
20 | Durán I, Álvarez-Gutiérrez N, Rubiera F, et al. Biogas purification by means of adsorption on pine sawdust-based activated carbon: impact of water vapor[J]. Chemical Engineering Journal, 2018, 353: 197-207. |
21 | Regufe M J, Ferreira A F P, Loureiro J M, et al. New hybrid composite honeycomb monolith with 13X zeolite and activated carbon for CO2 capture[J]. Adsorption, 2018, 24(3): 249-265. |
22 | Olajossy A, Gawdzik A, Budner Z, et al. Methane separation from coal mine methane gas by vacuum pressure swing adsorption[J]. Chemical Engineering Research and Design, 2003, 81(4): 474-482. |
23 | Lu B, Shen Y H, Tang Z L, et al. Vacuum pressure swing adsorption process for coalbed methane enrichment[J]. Chinese Journal of Chemical Engineering, 2021, 32: 264-280. |
24 | Yang J F, Bai H H, Shang H, et al. Experimental and simulation study on efficient CH4/N2 separation by pressure swing adsorption on silicalite-1 pellets[J]. Chemical Engineering Journal, 2020, 388: 124222. |
25 | Bao Z B, Yu L, Dou T, et al. Adsorption equilibria of CO2, CH4, N2, O2, and Ar on high silica zeolites[J]. Journal of Chemical & Engineering Data, 2011, 56(11): 4017-4023. |
26 | Yang B, Xu E L, Li M. Purification of coal mine methane on carbon molecular sieve by vacuum pressure swing adsorption[J]. Separation Science and Technology, 2016, 51(6): 909-916. |
27 | Zhang J H, Qu S J, Li L T, et al. Preparation of carbon molecular sieves used for CH4/N2 separation[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1737-1744. |
28 | Shi W R, Yang H W, Shen Y H, et al. Two-stage PSA/VSA to produce H2 with CO2 capture via steam methane reforming (SMR)[J]. International Journal of Hydrogen Energy, 2018, 43(41): 19057-19074. |
29 | Oreggioni G D, Brandani S, Luberti M, et al. CO2 capture from syngas by an adsorption process at a biomass gasification CHP plant: its comparison with amine-based CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 35: 71-81. |
30 | Liu Z, Grande C A, Li P, et al. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas[J]. Separation and Purification Technology, 2011, 81(3): 307-317. |
31 | Tang X, Wang Z F, Ripepi N, et al. Adsorption affinity of different types of coal: mean isosteric heat of adsorption[J]. Energy & Fuels, 2015, 29(6): 3609-3615. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[15] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||