化工学报 ›› 2023, Vol. 74 ›› Issue (3): 1352-1359.DOI: 10.11949/0438-1157.20221354
潘煜1(), 王子航1, 王佳韵1(), 王如竹2, 张华1
收稿日期:
2022-10-14
修回日期:
2022-12-20
出版日期:
2023-03-05
发布日期:
2023-04-19
通讯作者:
王佳韵
作者简介:
潘煜(1997—),男,硕士研究生,202390080@st.usst.edu.cn
基金资助:
Yu PAN1(), Zihang WANG1, Jiayun WANG1(), Ruzhu WANG2, Hua ZHANG1
Received:
2022-10-14
Revised:
2022-12-20
Online:
2023-03-05
Published:
2023-04-19
Contact:
Jiayun WANG
摘要:
除湿换热器将换热器与固体干燥剂结合,可显著提高空调系统的除湿效率。干燥剂的吸附特性对除湿换热器的除湿性能有重要影响。研制了可得然-氯化锂复合吸附剂,用ASAP麦克吸附仪及STA同步热分析仪,从等温吸附及动态吸附特性等角度分析了其吸附特性,实现了材料的组分优化,并将优化后的复合吸附剂应用于除湿换热器,验证了该新型除湿换热器高效的深度除湿性能。实验结果表明,可得然复合吸附剂具有深度除湿的能力,即使在30℃、30%RH干燥工况下,其除湿量高达2.65 g/g,吸附速率系数k为 2.1×10-4 s-1;所制备复合除湿换热器的MRC可以达到3.78 g/kg。本研究实现了除湿性好、循环性能稳定的低成本高性能新型除湿换热器的开发,为深度除湿系统的技术研发提供参考。
中图分类号:
潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359.
Yu PAN, Zihang WANG, Jiayun WANG, Ruzhu WANG, Hua ZHANG. Heat and moisture performance study of Cur-LiCl coated heat exchanger[J]. CIESC Journal, 2023, 74(3): 1352-1359.
换热器参数 | 数值 |
---|---|
长度, L/mm | 154.0 |
高度, H/mm | 123.0 |
宽度, W/mm | 30.0 |
翅片厚度, δf /mm | 0.1 |
翅片间距, f/mm | 2.2 |
扁管排数, n | 12 |
铜管内径, di/mm | 1.0 |
铜管外径, do/mm | 2.0 |
表1 微通道换热器尺寸
Table 1 Sizes of microchannel heat exchanger
换热器参数 | 数值 |
---|---|
长度, L/mm | 154.0 |
高度, H/mm | 123.0 |
宽度, W/mm | 30.0 |
翅片厚度, δf /mm | 0.1 |
翅片间距, f/mm | 2.2 |
扁管排数, n | 12 |
铜管内径, di/mm | 1.0 |
铜管外径, do/mm | 2.0 |
1 | Yu B F, Hu Z B, Liu M, et al. Review of research on air-conditioning systems and indoor air quality control for human health[J]. International Journal of Refrigeration, 2009, 32(1): 3-20. |
2 | Tu Y D, Wang R Z, Ge T S, et al. Comfortable, high-efficiency heat pump with desiccant-coated, water-sorbing heat exchangers[J]. Scientific Reports, 2017, 7: 40437. |
3 | Rafique M M, Gandhidasan P, Bahaidarah H M S. Liquid desiccant materials and dehumidifiers—a review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 179-195. |
4 | Qin M H, Hou P M, Wu Z M, et al. Precise humidity control materials for autonomous regulation of indoor moisture[J]. Building and Environment, 2020, 169: 106581. |
5 | Rambhad K S, Walke P V, Tidke D J. Solid desiccant dehumidification and regeneration methods—a review[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 73-83. |
6 | Sultan M, El-Sharkawy I I, Miyazaki T, et al. An overview of solid desiccant dehumidification and air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2015, 46: 16-29. |
7 | Aristov Y I, Tokarev M M, Cacciola G, et al. Selective water sorbents for multiple applications (part: 1): CaCl2 confined in mesopores of silica gel: sorption properties[J]. Reaction Kinetics and Catalysis Letters, 1996, 59(2): 325-333. |
8 | 高娇, 王丽伟, 周志松, 等. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67(S2): 184-190. |
Gao J, Wang L W, Zhou Z S, et al. Non-equilibrium sorption/desorption performance of composite multi-salt sorbent[J]. CIESC Journal, 2016, 67(S2): 184-190. | |
9 | 邓超和, 王佳韵, 李金凤, 等. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409. |
Deng C H, Wang J Y, Li J F, et al. Preparation and adsorption/desorption performance of hydrogel-based composite sorbent driven by low-temperature[J]. CIESC Journal, 2021, 72(8): 4401-4409. | |
10 | 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361. |
Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix[J]. CIESC Journal, 2020, 71(7): 3354-3361. | |
11 | Zhao F, Zhou X Y, Liu Y, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advanced Materials, 2019, 31(10): e1806446. |
12 | Entezari A, Ejeian M, Wang R Z. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts[J]. ACS Materials Letters, 2020, 2(5): 471-477. |
13 | Yao H Z, Zhang P P, Huang Y X, et al. Highly efficient clean water production from contaminated air with a wide humidity range[J]. Advanced Materials, 2020, 32(6): e1905875. |
14 | Li R Y, Shi Y, Alsaedi M, et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator[J]. Environmental Science & Technology, 2018, 52(19): 11367-11377. |
15 | Xu J X, Li T X, Yan T S, et al. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent[J]. Energy & Environmental Science, 2021, 14(11): 5979-5994. |
16 | Wang J Y, Deng C H, Zhong G D, et al. High-yield and scalable water harvesting of honeycomb hygroscopic polymer driven by natural sunlight[J]. Cell Reports Physical Science, 2022, 3(7): 100954. |
17 | Vivekh P, Kumja M, Bui D T, et al. Recent developments in solid desiccant coated heat exchangers—a review[J]. Applied Energy, 2018, 229: 778-803. |
18 | Narayanan R, Saman W Y, White S D, et al. Comparative study of different desiccant wheel designs[J]. Applied Thermal Engineering, 2011, 31(10): 1613-1620. |
19 | Gao D C, Sun Y J, Ma Z, et al. A review on integration and design of desiccant air-conditioning systems for overall performance improvements[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110809. |
20 | Zheng X, Ge T S, Jiang Y, et al. Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger[J]. International Journal of Refrigeration, 2015, 51: 24-32. |
21 | Ge L R, Ge T S, Wang R Z, et al. Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers[J]. Renewable and Sustainable Energy Reviews, 2022, 157: 112015. |
22 | Vivekh P, Bui D T, Wong Y, et al. Performance evaluation of PVA-LiCl coated heat exchangers for next-generation of energy-efficient dehumidification[J]. Applied Energy, 2019, 237: 733-750. |
23 | Wu M, Chen X X, Xu J T, et al. Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties[J]. Carbohydrate Polymers, 2022, 278: 119003. |
24 | Tao H T, Guo L, Qin Z, et al. Textural characteristics of mixed gels improved by structural recombination and the formation of hydrogen bonds between curdlan and carrageenan[J]. Food Hydrocolloids, 2022, 129: 107678. |
25 | 张永刚, 王伟, 张艳敏, 等. 可得然胶凝胶高温稳定性的改进[J]. 化学与生物工程, 2020, 37(1): 25-30. |
Zhang Y G, Wang W, Zhang Y M, et al. Improvement in high temperature stability of curdlan gel[J]. Chemistry & Bioengineering, 2020, 37(1): 25-30. | |
26 | Xiao M, Jiang M F, Wu K, et al. Investigation on curdlan dissociation by heating in water[J]. Food Hydrocolloids, 2017, 70: 57-64. |
27 | Chen Y P, Wang F S. Review on the preparation, biological activities and applications of curdlan and its derivatives[J]. European Polymer Journal, 2020, 141: 110096. |
28 | Andhare R S, Shooshtari A, Dessiatoun S V, et al. Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration[J]. Applied Thermal Engineering, 2016, 96: 178-189. |
29 | Xu B, Zhang C, Wang Y, et al. Experimental investigation of the performance of microchannel heat exchangers with a new type of fin under wet and frosting conditions[J]. Applied Thermal Engineering, 2015, 89: 444-458. |
30 | 郑旭. 小温差再生的干燥剂的优选及其在除湿换热器中的应用[D]. 上海: 上海交通大学, 2016. |
Zheng X. Optimization and application of desiccant materials in desiccant coated heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
31 | Zhao H Z, Wang Z Y, Li Q W, et al. Water sorption on composite material “zeolite 13X modified by LiCl and CaCl2 ”[J]. Microporous and Mesoporous Materials, 2020, 299: 110109. |
32 | Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356(6336): 430-434. |
33 | Dawoud B, Vedder U, Amer E H, et al. Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer[J]. International Journal of Heat and Mass Transfer, 2007, 50(11/12): 2190-2199. |
[1] | 邹启宏, 李乾, 葛天舒. 基于多目标下的两级并联除湿热泵系统实验研究[J]. 化工学报, 2023, 74(S1): 265-271. |
[2] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[3] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[8] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[9] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[12] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[13] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[14] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[15] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 151
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||