化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4401-4409.doi: 10.11949/0438-1157.20201759

• 材料化学工程与纳米技术 • 上一篇    下一篇

可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究

邓超和1(),王佳韵1(),李金凤2,刘业凤1,王如竹3   

  1. 1.上海理工大学能源与动力工程学院,上海 200082
    2.上海理工大学理学院,上海 200082
    3.上海交通大学机械与动力工程学院,上海 201100
  • 收稿日期:2020-12-07 修回日期:2021-05-26 出版日期:2021-08-05 发布日期:2021-08-05
  • 通讯作者: 王佳韵 E-mail:790677530@qq.com;jywang@usst.edu.cn
  • 作者简介:邓超和(1995—),男,硕士研究生,790677530@qq.com
  • 基金资助:
    国家自然科学基金项目(52006145);上海市青年科技英才扬帆计划项目(20YF1431500);上海市晨光计划项目(19CG54)

Preparation and adsorption / desorption performance of hydrogel-based composite sorbent driven by low-temperature

Chaohe DENG1(),Jiayun WANG1(),Jinfeng LI2,Yefeng LIU1,Ruzhu WANG3   

  1. 1.School of Energy and Power Engineering,University of Shanghai for Science and Technology, Shanghai 200082,China
    2.College of Science, University of Shanghai for Science and Technology, Shanghai 200082, China
    3.School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 201100, China
  • Received:2020-12-07 Revised:2021-05-26 Published:2021-08-05 Online:2021-08-05
  • Contact: Jiayun WANG E-mail:790677530@qq.com;jywang@usst.edu.cn

摘要:

以丙烯酰胺单体、碳纳米管和无水氯化锂为原材料,通过原位聚合法制备了一种新型复合吸附剂,该吸附剂呈水凝胶形式。采用扫描电子显微镜和同步热分析仪对吸附剂进行表征,并用恒温恒湿箱测试了复合吸附剂的动态吸附/解附性能以及平衡吸附性能。研究表明,凝胶复合吸附剂在25℃和75%RH下,平衡吸附量高达1.75 g/g,是硅胶基复合吸附剂的2.5倍以上;并在45℃环境中解吸出70%的吸附水量;采用线性驱动力模型拟合计算了相同工况的动态吸附速率,与国内外其他复合吸附剂相比,本文吸附剂的吸附速率系数和吸附量均有很大提升。

关键词: 复合吸附剂, 水凝胶, 热湿性能, LDF模型

Abstract:

A novel hydrogel-based composite sorbent was prepared by in-situ polymerization with acrylamide monomer, carbon nanotubes and anhydrous lithium chloride. The sorbent was characterized by scanning electron microscope and synchronous thermal analyzer. The dynamic adsorption / desorption performance and equilibrium adsorption performance of the composite adsorbent were tested in a constant temperature and humidity chamber. The results showed that the equilibrium adsorption capacity of the hydrogel-based sorbent was as high as 1.75 g/g at 25℃ and 75% relative humidity, more than 2.5 times of silica-based sorbent; moreover, hydrogel-based sorbent could desorb 70% of the adsorbed water under 45℃; the dynamic adsorption rate of hydrogel-based sorbent was calculated by fitting linear driving force model under the same conditions. Compared with other composite adsorbents at home and abroad, the adsorption rate coefficient and adsorption capacity of the adsorbent were greatly improved.

Key words: composite sorbent, hydrogel, hygrothermal performance, LDF model

中图分类号: 

  • O 647.32

表1

复合吸附剂的参数"

吸附剂AM质量/gCNT浓度/(mg/ml)含盐量/g干材料质量/g
PCL00.6000.5794
PCL10.6100.5854
PCL20.610.290.9825
PCL30.610.581.3552
PCL40.611.162.1302
PCL50.611.512.7004
PCL60.61.50.291.0318
PCL70.61.50.581.2911
PCL80.61.51.162.1986
PCL90.61.51.512.7966

图1

复合吸附剂在25℃&75%RH下吸附前后对比图"

图2

复合吸附剂的SEM图"

图3

PCL9的TGA曲线"

图4

各吸附剂在不同工况下的非平衡吸附性能"

图5

各吸附剂在不同工况下的动态解吸曲线"

图6

PCL9复合吸附剂稳定性实验"

图7

各吸附剂在不同温度下的平衡吸附量"

图8

在25℃&75%RH下的等温吸附动力学"

表2

25℃&75%RH下各吸附剂的吸附速率系数及相关系数"

吸附剂名称吸附速率系数/s-1相关系数
PCL20.005220.99327
PCL30.004500.98701
PCL40.004250.98835
PCL50.004860.99415
PCL60.005570.99688
PCL70.004490.98600
PCL80.004560.99280
PCL90.005180.99472

表3

各吸附剂的吸附速率系数及吸附量"

吸附剂吸附条件吸附速率系数/s-1吸附量/(g/g)文献
SGB/LiCl20℃&70%RH3.8×10-40.54[18]
SGC/LiCl20℃&70%RH2.9×10-40.69[18]
ACF3025℃&70%RH1.32×10-41.6[40]
SC3025℃&70%RH1.48×10-40.55[40]
CS625℃&80%RH2.55×10-31.06[32]
S515℃&70%RH1.5×10-30.46[41]
ACFF–Silica sol–LiCl3025℃&70%RH8.96×10-31.1[42]
PCL925℃&75%RH5.18×10-31.75本文
1 Gleick P H. The World's Water 1998—1999: The Biennial Report on Freshwater Resources[M]. St.Louis: Island Press, 1998.
2 Pan Z, Pitt W G, Zhang Y, et al. The upside-down water collection system of Syntrichia caninervis[J]. Nature Plants, 2016, 2: 16076.
3 Bergmair D, Metz S J, de Lange H C, et al. System analysis of membrane facilitated water generation from air humidity[J]. Desalination, 2014, 339: 26-33.
4 Fathieh F, Kalmutzki M J, Kapustin E A, et al. Practical water production from desert air[J]. Science Advances, 2018, 4(6): eaat3198.
5 Gordeeva L G, Solovyeva M V, Sapienza A, et al. Potable water extraction from the atmosphere: potential of MOFs[J]. Renewable Energy, 2020, 148: 72-80.
6 Al-Farayedhi A A, Ibrahim N I, Gandhidasan P. Condensate as a water source from vapor compression systems in hot and humid regions[J]. Desalination, 2014, 349: 60-67.
7 Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 358(6336):430.
8 Wikramanayake E D, Ozkan O, Bahadur V. Landfill gas-powered atmospheric water harvesting for oilfield operations in the United States[J]. Energy, 2017, 138: 647-658.
9 Li R Y, Shi Y, Alsaedi M, et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator[J]. Environmental Science & Technology, 2018, 52(19): 11367-11377.
10 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020, (1): 33-46.
Wang W W, Ge T S, Dai Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting[J]. Solar Energy, 2020, (1): 33-46.
11 Sun B C, Chakraborty A. Thermodynamic frameworks of adsorption kinetics modeling: dynamic water uptakes on silica gel for adsorption cooling applications[J]. Energy, 2015, 84: 296-302.
12 Balköse D, Ulutan S, Çakıcıoğlu Özkan F, et al. Dynamics of water vapor adsorption on humidity-indicating silica gel[J]. Applied Surface Science, 1998, 134(1/2/3/4): 39-46.
13 Golubovic M N, Hettiarachchi H D M, Worek W M. Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2802-2809.
14 AbdulKareem F A, Mohd Shariff A, Ullah S, et al. Adsorption performance of 5A molecular sieve zeolite in water vapor-binary gas environment: experimental and modeling evaluation[J]. Journal of Industrial and Engineering Chemistry, 2018, 64: 173-187.
15 王佳韵. 基于复合活性炭纤维材料的吸附式空气取水原理与系统[D]. 上海: 上海交通大学, 2018.
Wang J Y. Research on principle and system of atmosphere water harvesting unit based on active carbon fiber composite material[D]. Shanghai: Shanghai Jiao Tong University, 2018.
16 Aristov Y I, Tokarev M M, Cacciola G, et al. Selective water sorbents for multiple applications(1): CaCl2 confined in mesopores of silica gel: sorption properties[J]. Reaction Kinetics and Catalysis Letters, 1996, 59(2): 325-333.
17 Gordeeva L G, Restuccia G, Cacciola G, et al. Selective water sorbents for multiple applications(5): LiBr confined in mesopores of silica gel: sorption properties[J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 81-88.
18 郑旭. 小温差再生的干燥剂的优选及其在除湿换热器中的应用[D]. 上海: 上海交通大学, 2016.
Zheng X. Optimization and application of desiccant materials in desiccant coated heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2016.
19 Zheng X, Ge T S, Wang R Z. Recent progress on desiccant materials for solid desiccant cooling systems[J]. Energy, 2014, 74: 280-294.
20 He Y L, Xie T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material[J]. Applied Thermal Engineering, 2015, 81: 28-50.
21 刘业凤, 王如竹, 夏再忠. 连续循环式吸附空气取水系统[J]. 化工学报, 2004, 55(6): 1002-1005.
Liu Y F, Wang R Z, Xia Z Z. Continuous cycle unit for extracing water from air[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(6): 1002-1005.
22 Zhao F, Zhou X Y, Liu Y, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advanced Materials, 2019, 31(10): 1806446.
23 Towsif Abtab S M, Alezi D, Bhatt P M, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water[J]. Chem, 2018, 4(1): 94-105.
24 高娇, 王丽伟, 周志松, 等. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67: 184-190.
Gao J, Wang L W, Zhou Z S, et al. Non-equilibrium sorption/desorption performance of composite multi-salt sorbent[J]. CIESC Journal, 2016, 67: 184-190.
25 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361.
Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix [J]. CIESC Journal, 2020, 71(7): 3354-3361.
26 刘金亚, 王佳韵, 王丽伟, 等. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67: 46-50.
Liu J Y, Wang J Y, Wang L W, et al. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67: 46-50.
27 Gordeeva L, Grekova A, Krieger T, et al. Composites “binary salts in porous matrix” for adsorption heat transformation[J]. Applied Thermal Engineering, 2013, 50(2): 1633-1638.
28 Entezari A, Ejeian M, Wang R Z. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts[J]. ACS Materials Letters, 2020, 2(5): 471-477.
29 Kallenberger P A, Fröba M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix[J]. Communications Chemistry, 2018, 1: 28.
30 张霞, 荆妙蕾. PAM水凝胶制备及溶胀性能研究[J]. 天津纺织科技, 2017, (4): 51-54.
Zhang X, Jing M L. Preparation of porous PAM hydrogel and their swelling properties research[J]. Tianjin Textile Science & Technology, 2017, (4): 51-54.
31 包亮军, 张定军, 吴彦飞, 等. 离子液体中PAM水凝胶颗粒的制备[J]. 应用化工, 2019, 48(11): 2577-2580, 2584.
Bao L J, Zhang D J, Wu Y F, et al. Hydrogel particles were prepared by using ionic liquid as the dispersion medium[J]. Applied Chemical Industry, 2019, 48(11): 2577-2580, 2584.
32 Zhao H Z, Wang Z Y, Li Q W, et al. Water sorption on composite material “zeolite 13X modified by LiCl and CaCl2”[J]. Microporous and Mesoporous Materials, 2020, 299: 110109.
33 Zheng X, Ge T S, Wang R Z, et al. Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts[J]. Chemical Engineering Science, 2014, 120: 1-9.
34 Matsumoto K, Sakikawa N, Miyata T. Thermo-responsive gels that absorb moisture and ooze water[J]. Nature Communications, 2018, 9(1): 1-7.
35 Roy S, Hussain C M, Mitra S. Carbon nanotube-immobilized super-absorbent membrane for harvesting water from the atmosphere[J]. Environmental Science: Water Research & Technology, 2015, 1(6): 753-760.
36 Ji P J, Sun H H, Zhong Y X, et al. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes[J]. Chemical Engineering Science, 2012, 81: 140-145.
37 Yan T, Li T X, Wang R Z, et al. Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes[J]. Applied Thermal Engineering, 2015, 77: 20-29.
38 胡雷鸣, 葛天舒, 江宇, 等. 金属基复合吸附剂的吸湿性能测试[J]. 制冷学报, 2014, 35(2): 69-75.
Hu L M, Ge T S, Jiang Y, et al. Hygroscopic property of metal matrix composite desiccant[J]. Journal of Refrigeration, 2014, 35(2): 69-75.
39 Wang J Y, Liu J Y, Wang R Z, et al. Experimental research of composite solid sorbents for fresh water production driven by solar energy[J]. Applied Thermal Engineering, 2017, 121: 941-950.
40 Wang J Y, Wang R Z, Wang L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Applied Thermal Engineering, 2016, 100: 893-901.
41 Entezari A, Ge T S, Wang R Z. Water adsorption on the coated aluminum sheets by composite materials (LiCl + LiBr)/silica gel[J]. Energy, 2018, 160: 64-71.
42 Wang W W, Xie S T, Pan Q W, et al. Air-cooled adsorption-based device for harvesting water from island air[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110802.
[1] 肖弦, 徐文昊, 沈亮, 王远鹏, 卢英华. 氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能[J]. 化工学报, 2021, 72(7): 3869-3879.
[2] 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772.
[3] 田军鹏, 沈圆辉, 张东辉, 唐忠利. 规整复合吸附剂真空变压吸附分离CH4/N2工艺模拟与分析[J]. 化工学报, 2021, 72(11): 5675-5685.
[4] 侯雅琦, 沈敬尧, 易达, 王哲, 康玲玲, 孟子晖, 薛敏. 异丙基丙烯酰胺水凝胶纳米微球粒径的控制及其对多肽吸附的影响[J]. 化工学报, 2020, 71(S2): 267-272.
[5] 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281.
[6] 文国宇, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 水凝胶材料在金属离子富集与分离领域的研究进展[J]. 化工学报, 2020, 71(9): 3866-3875.
[7] 王勃翔,刘丽,李佳,路艳华,程德红,靳惠宇,周凌. 烯丙基丝素蛋白温敏水凝胶的合成及性能研究[J]. 化工学报, 2020, 71(12): 5821-5830.
[8] 杨新蔚, 单国荣, 曹志海, 吕挺, 潘鹏举. 制备方法对GO/P(NIPAM-MA)水凝胶La3+吸附性能的影响[J]. 化工学报, 2019, 70(10): 4072-4079.
[9] 单国荣, 张宁. 氧化石墨烯复合水凝胶研究进展[J]. 化工学报, 2018, 69(2): 535-545.
[10] 杨琴, 赵娜, 房春娟, 赵军凯, 王文东. 高弹性自愈水凝胶(C3H5O)1CB[7]/PAA的制备及性能[J]. 化工学报, 2018, 69(12): 5326-5331.
[11] 张宁, 单国荣. 近红外光响应氧化石墨烯/微凝胶复合智能水凝胶[J]. 化工学报, 2018, 69(11): 4862-4868.
[12] 李玮, 刘芳, 陈宝明, 魏茂丰, 郜凯凯, 耿文广. 寒冷地区湿传递对多层墙体热湿性能的影响[J]. 化工学报, 2017, 68(S1): 162-168.
[13] 赵惠忠, 程俊峰, 唐祥虎, 张少波. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能实验[J]. 化工学报, 2017, 68(5): 1860-1865.
[14] 朱芳啟, 江龙, 王丽伟, 王如竹. MnCl2/CaCl2-NH3再吸附系统的制冷性能[J]. 化工学报, 2016, 67(S2): 32-37.
[15] 高娇, 王丽伟, 周志松, 王如竹. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67(S2): 184-190.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐晓津, 骆广生, 李洪波, 汪家鼎. 聚合-分散脉冲筛板萃取塔两相流动特性[J]. CIESC Journal, 2004, 12(1): 1 -6 .
[2] 马璐, 李浩然, 王从敏, 韩世钧. α-蒎烯+顺式蒎烷+正已醇体系的等温等压汽液平衡[J]. CIESC Journal, 2004, 12(1): 92 -95 .
[3] 夏春明, 郑建荣, J.Howell. 基于非负频谱分解的厂级多重振荡源的分离研究[J]. CIESC Journal, 2007, 15(3): 353 -360 .
[4] 朱建华, 沈复. 酯化反应蒸馏过程的模型化及模拟研究[J]. CIESC Journal, 2003, 11(6): 736 -739 .
[5] 赵锁奇, 许志明, 王仁安. 超临界流体萃取制备脱沥青油与沥青微粒[J]. CIESC Journal, 2003, 11(6): 691 -695 .
[6] 闻建平, 王长. 吡虫啉合成的工艺优化和工业放大[J]. CIESC Journal, 2003, 11(5): 604 -607 .
[7] 罗坤, 郑友取, 樊建人, 岑可法. 三维混合层中大涡结构与扩散颗粒的相互作用[J]. CIESC Journal, 2003, 11(4): 377 -382 .
[8] 刘伯潭, 刘春江. 精馏塔板液相流场三维模拟[J]. CIESC Journal, 2002, 10(5): 517 -521 .
[9] 张旭, 杨燕华, 张成芳, 王军. MDEA与哌嗪、二乙醇胺混合溶液吸收二氧化碳速率研究[J]. CIESC Journal, 2003, 11(4): 408 -413 .
[10] 袁俊杰, 周树学, 廖建和, 武利民. 有机无机杂化物作乳化剂的苯丙乳液制备及其性能表征[J]. CIESC Journal, 2003, 11(4): 483 -488 .