化工学报 ›› 2021, Vol. 72 ›› Issue (8): 4401-4409.DOI: 10.11949/0438-1157.20201759
收稿日期:
2020-12-07
修回日期:
2021-05-26
出版日期:
2021-08-05
发布日期:
2021-08-05
通讯作者:
王佳韵
作者简介:
邓超和(1995—),男,硕士研究生,基金资助:
Chaohe DENG1(),Jiayun WANG1(),Jinfeng LI2,Yefeng LIU1,Ruzhu WANG3
Received:
2020-12-07
Revised:
2021-05-26
Online:
2021-08-05
Published:
2021-08-05
Contact:
Jiayun WANG
摘要:
以丙烯酰胺单体、碳纳米管和无水氯化锂为原材料,通过原位聚合法制备了一种新型复合吸附剂,该吸附剂呈水凝胶形式。采用扫描电子显微镜和同步热分析仪对吸附剂进行表征,并用恒温恒湿箱测试了复合吸附剂的动态吸附/解附性能以及平衡吸附性能。研究表明,凝胶复合吸附剂在25℃和75%RH下,平衡吸附量高达1.75 g/g,是硅胶基复合吸附剂的2.5倍以上;并在45℃环境中解吸出70%的吸附水量;采用线性驱动力模型拟合计算了相同工况的动态吸附速率,与国内外其他复合吸附剂相比,本文吸附剂的吸附速率系数和吸附量均有很大提升。
中图分类号:
邓超和, 王佳韵, 李金凤, 刘业凤, 王如竹. 可低温驱动的凝胶复合吸附剂的制备及吸/脱附性能研究[J]. 化工学报, 2021, 72(8): 4401-4409.
Chaohe DENG, Jiayun WANG, Jinfeng LI, Yefeng LIU, Ruzhu WANG. Preparation and adsorption / desorption performance of hydrogel-based composite sorbent driven by low-temperature[J]. CIESC Journal, 2021, 72(8): 4401-4409.
吸附剂 | AM质量/g | CNT浓度/(mg/ml) | 含盐量/g | 干材料质量/g |
---|---|---|---|---|
PCL0 | 0.6 | 0 | 0 | 0.5794 |
PCL1 | 0.6 | 1 | 0 | 0.5854 |
PCL2 | 0.6 | 1 | 0.29 | 0.9825 |
PCL3 | 0.6 | 1 | 0.58 | 1.3552 |
PCL4 | 0.6 | 1 | 1.16 | 2.1302 |
PCL5 | 0.6 | 1 | 1.51 | 2.7004 |
PCL6 | 0.6 | 1.5 | 0.29 | 1.0318 |
PCL7 | 0.6 | 1.5 | 0.58 | 1.2911 |
PCL8 | 0.6 | 1.5 | 1.16 | 2.1986 |
PCL9 | 0.6 | 1.5 | 1.51 | 2.7966 |
表1 复合吸附剂的参数
Table 1 Parameters of composite sorbents
吸附剂 | AM质量/g | CNT浓度/(mg/ml) | 含盐量/g | 干材料质量/g |
---|---|---|---|---|
PCL0 | 0.6 | 0 | 0 | 0.5794 |
PCL1 | 0.6 | 1 | 0 | 0.5854 |
PCL2 | 0.6 | 1 | 0.29 | 0.9825 |
PCL3 | 0.6 | 1 | 0.58 | 1.3552 |
PCL4 | 0.6 | 1 | 1.16 | 2.1302 |
PCL5 | 0.6 | 1 | 1.51 | 2.7004 |
PCL6 | 0.6 | 1.5 | 0.29 | 1.0318 |
PCL7 | 0.6 | 1.5 | 0.58 | 1.2911 |
PCL8 | 0.6 | 1.5 | 1.16 | 2.1986 |
PCL9 | 0.6 | 1.5 | 1.51 | 2.7966 |
吸附剂名称 | 吸附速率系数/s-1 | 相关系数 |
---|---|---|
PCL2 | 0.00522 | 0.99327 |
PCL3 | 0.00450 | 0.98701 |
PCL4 | 0.00425 | 0.98835 |
PCL5 | 0.00486 | 0.99415 |
PCL6 | 0.00557 | 0.99688 |
PCL7 | 0.00449 | 0.98600 |
PCL8 | 0.00456 | 0.99280 |
PCL9 | 0.00518 | 0.99472 |
表2 25℃&75%RH下各吸附剂的吸附速率系数及相关系数
Table 2 The coefficient of adsorption rates and related coefficients of sorbents under 25℃ & 75% RH
吸附剂名称 | 吸附速率系数/s-1 | 相关系数 |
---|---|---|
PCL2 | 0.00522 | 0.99327 |
PCL3 | 0.00450 | 0.98701 |
PCL4 | 0.00425 | 0.98835 |
PCL5 | 0.00486 | 0.99415 |
PCL6 | 0.00557 | 0.99688 |
PCL7 | 0.00449 | 0.98600 |
PCL8 | 0.00456 | 0.99280 |
PCL9 | 0.00518 | 0.99472 |
吸附剂 | 吸附条件 | 吸附速率系数/s-1 | 吸附量/(g/g) | 文献 |
---|---|---|---|---|
SGB/LiCl | 20℃&70%RH | 3.8×10-4 | 0.54 | [ |
SGC/LiCl | 20℃&70%RH | 2.9×10-4 | 0.69 | [ |
ACF30 | 25℃&70%RH | 1.32×10-4 | 1.6 | [ |
SC30 | 25℃&70%RH | 1.48×10-4 | 0.55 | [ |
CS6 | 25℃&80%RH | 2.55×10-3 | 1.06 | [ |
S5 | 15℃&70%RH | 1.5×10-3 | 0.46 | [ |
ACFF–Silica sol–LiCl30 | 25℃&70%RH | 8.96×10-3 | 1.1 | [ |
PCL9 | 25℃&75%RH | 5.18×10-3 | 1.75 | 本文 |
表3 各吸附剂的吸附速率系数及吸附量
Table 3 The coefficient of adsorption rates and adsorption capacity of each adsorbent humidity
吸附剂 | 吸附条件 | 吸附速率系数/s-1 | 吸附量/(g/g) | 文献 |
---|---|---|---|---|
SGB/LiCl | 20℃&70%RH | 3.8×10-4 | 0.54 | [ |
SGC/LiCl | 20℃&70%RH | 2.9×10-4 | 0.69 | [ |
ACF30 | 25℃&70%RH | 1.32×10-4 | 1.6 | [ |
SC30 | 25℃&70%RH | 1.48×10-4 | 0.55 | [ |
CS6 | 25℃&80%RH | 2.55×10-3 | 1.06 | [ |
S5 | 15℃&70%RH | 1.5×10-3 | 0.46 | [ |
ACFF–Silica sol–LiCl30 | 25℃&70%RH | 8.96×10-3 | 1.1 | [ |
PCL9 | 25℃&75%RH | 5.18×10-3 | 1.75 | 本文 |
1 | Gleick P H. The World's Water 1998—1999: The Biennial Report on Freshwater Resources[M]. St.Louis: Island Press, 1998. |
2 | Pan Z, Pitt W G, Zhang Y, et al. The upside-down water collection system of Syntrichia caninervis[J]. Nature Plants, 2016, 2: 16076. |
3 | Bergmair D, Metz S J, de Lange H C, et al. System analysis of membrane facilitated water generation from air humidity[J]. Desalination, 2014, 339: 26-33. |
4 | Fathieh F, Kalmutzki M J, Kapustin E A, et al. Practical water production from desert air[J]. Science Advances, 2018, 4(6): eaat3198. |
5 | Gordeeva L G, Solovyeva M V, Sapienza A, et al. Potable water extraction from the atmosphere: potential of MOFs[J]. Renewable Energy, 2020, 148: 72-80. |
6 | Al-Farayedhi A A, Ibrahim N I, Gandhidasan P. Condensate as a water source from vapor compression systems in hot and humid regions[J]. Desalination, 2014, 349: 60-67. |
7 | Kim H, Yang S, Rao S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 358(6336):430. |
8 | Wikramanayake E D, Ozkan O, Bahadur V. Landfill gas-powered atmospheric water harvesting for oilfield operations in the United States[J]. Energy, 2017, 138: 647-658. |
9 | Li R Y, Shi Y, Alsaedi M, et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator[J]. Environmental Science & Technology, 2018, 52(19): 11367-11377. |
10 | 王雯雯, 葛天舒, 代彦军, 等. 太阳能吸附式空气取水研究现状[J]. 太阳能, 2020, (1): 33-46. |
Wang W W, Ge T S, Dai Y J, et al. Status of solar-driven sorption-based atmosphere water harvesting[J]. Solar Energy, 2020, (1): 33-46. | |
11 | Sun B C, Chakraborty A. Thermodynamic frameworks of adsorption kinetics modeling: dynamic water uptakes on silica gel for adsorption cooling applications[J]. Energy, 2015, 84: 296-302. |
12 | Balköse D, Ulutan S, Çakıcıoğlu Özkan F, et al. Dynamics of water vapor adsorption on humidity-indicating silica gel[J]. Applied Surface Science, 1998, 134(1/2/3/4): 39-46. |
13 | Golubovic M N, Hettiarachchi H D M, Worek W M. Sorption properties for different types of molecular sieve and their influence on optimum dehumidification performance of desiccant wheels[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 2802-2809. |
14 | AbdulKareem F A, Mohd Shariff A, Ullah S, et al. Adsorption performance of 5A molecular sieve zeolite in water vapor-binary gas environment: experimental and modeling evaluation[J]. Journal of Industrial and Engineering Chemistry, 2018, 64: 173-187. |
15 | 王佳韵. 基于复合活性炭纤维材料的吸附式空气取水原理与系统[D]. 上海: 上海交通大学, 2018. |
Wang J Y. Research on principle and system of atmosphere water harvesting unit based on active carbon fiber composite material[D]. Shanghai: Shanghai Jiao Tong University, 2018. | |
16 | Aristov Y I, Tokarev M M, Cacciola G, et al. Selective water sorbents for multiple applications(1): CaCl2 confined in mesopores of silica gel: sorption properties[J]. Reaction Kinetics and Catalysis Letters, 1996, 59(2): 325-333. |
17 | Gordeeva L G, Restuccia G, Cacciola G, et al. Selective water sorbents for multiple applications(5): LiBr confined in mesopores of silica gel: sorption properties[J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 81-88. |
18 | 郑旭. 小温差再生的干燥剂的优选及其在除湿换热器中的应用[D]. 上海: 上海交通大学, 2016. |
Zheng X. Optimization and application of desiccant materials in desiccant coated heat exchanger[D]. Shanghai: Shanghai Jiao Tong University, 2016. | |
19 | Zheng X, Ge T S, Wang R Z. Recent progress on desiccant materials for solid desiccant cooling systems[J]. Energy, 2014, 74: 280-294. |
20 | He Y L, Xie T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material[J]. Applied Thermal Engineering, 2015, 81: 28-50. |
21 | 刘业凤, 王如竹, 夏再忠. 连续循环式吸附空气取水系统[J]. 化工学报, 2004, 55(6): 1002-1005. |
Liu Y F, Wang R Z, Xia Z Z. Continuous cycle unit for extracing water from air[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(6): 1002-1005. | |
22 | Zhao F, Zhou X Y, Liu Y, et al. Super moisture-absorbent gels for all-weather atmospheric water harvesting[J]. Advanced Materials, 2019, 31(10): 1806446. |
23 | Towsif Abtab S M, Alezi D, Bhatt P M, et al. Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water[J]. Chem, 2018, 4(1): 94-105. |
24 | 高娇, 王丽伟, 周志松, 等. 多盐复合吸附剂的非平衡吸附/解吸特性[J]. 化工学报, 2016, 67: 184-190. |
Gao J, Wang L W, Zhou Z S, et al. Non-equilibrium sorption/desorption performance of composite multi-salt sorbent[J]. CIESC Journal, 2016, 67: 184-190. | |
25 | 刘华, 彭佳杰, 余凯, 等. 活性氧化铝基质新型复合吸附剂的制备和储热性能[J]. 化工学报, 2020, 71(7): 3354-3361. |
Liu H, Peng J J, Yu K, et al. Preparation and thermal storage performance of novel composite sorbent with activated alumina matrix [J]. CIESC Journal, 2020, 71(7): 3354-3361. | |
26 | 刘金亚, 王佳韵, 王丽伟, 等. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67: 46-50. |
Liu J Y, Wang J Y, Wang L W, et al. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67: 46-50. | |
27 | Gordeeva L, Grekova A, Krieger T, et al. Composites “binary salts in porous matrix” for adsorption heat transformation[J]. Applied Thermal Engineering, 2013, 50(2): 1633-1638. |
28 | Entezari A, Ejeian M, Wang R Z. Super atmospheric water harvesting hydrogel with alginate chains modified with binary salts[J]. ACS Materials Letters, 2020, 2(5): 471-477. |
29 | Kallenberger P A, Fröba M. Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix[J]. Communications Chemistry, 2018, 1: 28. |
30 | 张霞, 荆妙蕾. PAM水凝胶制备及溶胀性能研究[J]. 天津纺织科技, 2017, (4): 51-54. |
Zhang X, Jing M L. Preparation of porous PAM hydrogel and their swelling properties research[J]. Tianjin Textile Science & Technology, 2017, (4): 51-54. | |
31 | 包亮军, 张定军, 吴彦飞, 等. 离子液体中PAM水凝胶颗粒的制备[J]. 应用化工, 2019, 48(11): 2577-2580, 2584. |
Bao L J, Zhang D J, Wu Y F, et al. Hydrogel particles were prepared by using ionic liquid as the dispersion medium[J]. Applied Chemical Industry, 2019, 48(11): 2577-2580, 2584. | |
32 | Zhao H Z, Wang Z Y, Li Q W, et al. Water sorption on composite material “zeolite 13X modified by LiCl and CaCl2”[J]. Microporous and Mesoporous Materials, 2020, 299: 110109. |
33 | Zheng X, Ge T S, Wang R Z, et al. Performance study of composite silica gels with different pore sizes and different impregnating hygroscopic salts[J]. Chemical Engineering Science, 2014, 120: 1-9. |
34 | Matsumoto K, Sakikawa N, Miyata T. Thermo-responsive gels that absorb moisture and ooze water[J]. Nature Communications, 2018, 9(1): 1-7. |
35 | Roy S, Hussain C M, Mitra S. Carbon nanotube-immobilized super-absorbent membrane for harvesting water from the atmosphere[J]. Environmental Science: Water Research & Technology, 2015, 1(6): 753-760. |
36 | Ji P J, Sun H H, Zhong Y X, et al. Improvement of the thermal conductivity of a phase change material by the functionalized carbon nanotubes[J]. Chemical Engineering Science, 2012, 81: 140-145. |
37 | Yan T, Li T X, Wang R Z, et al. Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes[J]. Applied Thermal Engineering, 2015, 77: 20-29. |
38 | 胡雷鸣, 葛天舒, 江宇, 等. 金属基复合吸附剂的吸湿性能测试[J]. 制冷学报, 2014, 35(2): 69-75. |
Hu L M, Ge T S, Jiang Y, et al. Hygroscopic property of metal matrix composite desiccant[J]. Journal of Refrigeration, 2014, 35(2): 69-75. | |
39 | Wang J Y, Liu J Y, Wang R Z, et al. Experimental research of composite solid sorbents for fresh water production driven by solar energy[J]. Applied Thermal Engineering, 2017, 121: 941-950. |
40 | Wang J Y, Wang R Z, Wang L W. Water vapor sorption performance of ACF-CaCl2 and silica gel-CaCl2 composite adsorbents[J]. Applied Thermal Engineering, 2016, 100: 893-901. |
41 | Entezari A, Ge T S, Wang R Z. Water adsorption on the coated aluminum sheets by composite materials (LiCl + LiBr)/silica gel[J]. Energy, 2018, 160: 64-71. |
42 | Wang W W, Xie S T, Pan Q W, et al. Air-cooled adsorption-based device for harvesting water from island air[J]. Renewable and Sustainable Energy Reviews, 2021, 141: 110802. |
[1] | 潘煜, 王子航, 王佳韵, 王如竹, 张华. 基于可得然-氯化锂复合吸附剂的除湿换热器热湿性能研究[J]. 化工学报, 2023, 74(3): 1352-1359. |
[2] | 钟国栋, 邓超和, 王洋, 王佳韵, 王如竹. 蜂窝状水凝胶吸附床传热传质特性数值模拟及验证[J]. 化工学报, 2022, 73(3): 1083-1092. |
[3] | 肖弦, 徐文昊, 沈亮, 王远鹏, 卢英华. 氧化石墨烯与剩余活性污泥聚合制备多孔碳材料及其电化学性能[J]. 化工学报, 2021, 72(7): 3869-3879. |
[4] | 李威, 王秋旺, 曾敏. 水合盐基中低温热化学储热材料性能测试及数值研究[J]. 化工学报, 2021, 72(5): 2763-2772. |
[5] | 田军鹏, 沈圆辉, 张东辉, 唐忠利. 规整复合吸附剂真空变压吸附分离CH4/N2工艺模拟与分析[J]. 化工学报, 2021, 72(11): 5675-5685. |
[6] | 侯雅琦, 沈敬尧, 易达, 王哲, 康玲玲, 孟子晖, 薛敏. 异丙基丙烯酰胺水凝胶纳米微球粒径的控制及其对多肽吸附的影响[J]. 化工学报, 2020, 71(S2): 267-272. |
[7] | 赵惠忠, 雷敏, 黄天厚, 刘涛, 张敏. 复合吸附剂MWCNT/MgCl2的水蒸气吸附性能[J]. 化工学报, 2020, 71(S1): 272-281. |
[8] | 文国宇, 汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 水凝胶材料在金属离子富集与分离领域的研究进展[J]. 化工学报, 2020, 71(9): 3866-3875. |
[9] | 王勃翔,刘丽,李佳,路艳华,程德红,靳惠宇,周凌. 烯丙基丝素蛋白温敏水凝胶的合成及性能研究[J]. 化工学报, 2020, 71(12): 5821-5830. |
[10] | 杨新蔚, 单国荣, 曹志海, 吕挺, 潘鹏举. 制备方法对GO/P(NIPAM-MA)水凝胶La3+吸附性能的影响[J]. 化工学报, 2019, 70(10): 4072-4079. |
[11] | 单国荣, 张宁. 氧化石墨烯复合水凝胶研究进展[J]. 化工学报, 2018, 69(2): 535-545. |
[12] | 杨琴, 赵娜, 房春娟, 赵军凯, 王文东. 高弹性自愈水凝胶(C3H5O)1CB[7]/PAA的制备及性能[J]. 化工学报, 2018, 69(12): 5326-5331. |
[13] | 张宁, 单国荣. 近红外光响应氧化石墨烯/微凝胶复合智能水凝胶[J]. 化工学报, 2018, 69(11): 4862-4868. |
[14] | 李玮, 刘芳, 陈宝明, 魏茂丰, 郜凯凯, 耿文广. 寒冷地区湿传递对多层墙体热湿性能的影响[J]. 化工学报, 2017, 68(S1): 162-168. |
[15] | 赵惠忠, 程俊峰, 唐祥虎, 张少波. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能实验[J]. 化工学报, 2017, 68(5): 1860-1865. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||