化工学报 ›› 2018, Vol. 69 ›› Issue (S2): 9-16.DOI: 10.11949/j.issn.0438-1157.20181148
丁屹1, 丁国良2, 庄大伟2
收稿日期:
2018-10-08
修回日期:
2018-10-15
出版日期:
2018-12-31
发布日期:
2018-12-31
通讯作者:
丁国良
基金资助:
国家自然科学基金创新团队项目(51521004);上海市优秀学术带头人计划项目(16XD1401500)。
DING Yi1, DING Guoliang2, ZHUANG Dawei2
Received:
2018-10-08
Revised:
2018-10-15
Online:
2018-12-31
Published:
2018-12-31
Supported by:
supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (51521004) and the Program of Shanghai Academic Research Leader (16XD1401500).
摘要:
拥有排汗冷却技术的织物材料可以提高排汗效率,提高人体热舒适性。概述了织物面料排汗冷却技术的主要特征及实现原理,包括快速吸汗、快速排汗和提高透气性;详述了新型排汗冷却材料,包括吸湿快干纤维、表面张力驱动微流体排汗材料、水驱动形状记忆聚合物材料、吸湿膨胀多层复合材料和湿度梯度响应聚合物材料;介绍了排汗冷却材料应用在功能性衣物上的商业化进展;最后总结了各种排汗冷却技术的优缺点,并对未来研究和发展方向提出了建议。
中图分类号:
丁屹, 丁国良, 庄大伟. 排汗冷却材料用于人体舒适度调节的技术原理及进展[J]. 化工学报, 2018, 69(S2): 9-16.
DING Yi, DING Guoliang, ZHUANG Dawei. Principles and advances in perspiration cooling materials on human comfort adjustment[J]. CIESC Journal, 2018, 69(S2): 9-16.
[1] | ZHANG Y, BISHOP P A, GREEN J M, et al.Evaluation of a carbon dioxide personal cooling device for workers in hot environments[J].Journal of Occupational & Environmental Hygiene, 2010, 7(7):389-396. |
[2] | ZHANG G, ZHANG X, HUANG H, et al.Toward wearable cooling devices:highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays[J].Advanced Materials, 2016, 28(24):4811-4816. |
[3] | GAO C, KUKLANE K, HOLMÉR I.Cooling vests with phase change materials:the effects of melting temperature on heat strain alleviation in an extremely hot environment[J].European Journal of Applied Physiology, 2011, 111(6):1207. |
[4] | DELKUMBUREWATTE G B, DIAS T.Wearable cooling system to manage heat in protective clothing[J].Journal of the Textile Institute Proceedings & Abstracts, 2012, 103(5):483-489. |
[5] | Cooling fabrics market analysis, by type (synthetic and natural), by application (sports apparel, protective wear, lifestyle, and others), by region (North America, Europe, Asia Pacific, South & Central America, and MEA), and segment forecasts, 2018-2025[EB/OL].[2018-05-19].https://www.grandviewresearch.com/industry-analysis/cooling-fabrics-market. |
[6] | 唐虹, 简洁, 晓梦.可呼吸的面料——吸湿快干功能性面料的发展[J].中国服饰, 2007, (5):132-135. TANG H, JIAN J, XIAO M.Breathable fabric-the development of fast dry functional fabric[J].China Fashion, 2007, (5):132-135. |
[7] | 何天虹.纯纤维素纤维吸湿排汗快干织物的设计开发与研究[D].天津:天津工业大学,2007. HE T H.Design and development of cellulose fiber based fast dry fabric[D].Tianjin:Tianjin Polytechnic University, 2007. |
[8] | 倪迈.新型吸湿排汗针织运动服装面料的研究开发[D].上海:东华大学, 2010. NI M.Perspiration absorption of new fabrics knitted sportswear[D].Shanghai:Donghua University, 2010. |
[9] | 张红霞, 刘芙蓉, 王静, 等.织物结构对吸湿快干面料导湿性能的影响[J].纺织学报, 2008, 29(5):31-33. ZHANG H X, LIU F R, WANG J, et al.Effects of fabric weave and cover factor on moisture transfer ability of moisture absorbent and fast drying fabric[J].Journal of Textile Research, 2008, 29(5):31-33. |
[10] | XING S, JIANG J, PAN T.Interfacial microfluidic transport on micropatterned superhydrophobic textile[J].Lab on a Chip, 2013, 13(10):1937-1947. |
[11] | ZHONG Y, ZHANG F, WANG M, et al.Reversible humidity sensitive clothing for personal thermoregulation[J].Scientific Reports, 2017, 7:44208. |
[12] | LENG J, LAN X, LIU Y, et al.Shape-memory polymers and their composites:stimulus methods and applications[J].Progress in Materials Science, 2011, 56(7):1077-1135. |
[13] | 王文欣.环氧基和聚乙烯醇基形状记忆复合材料的驱动性能研究[D].哈尔滨:哈尔滨工业大学, 2017. WANG W X.Actuation properties of epoxy-based and poly(vinyl alcohol)-based shape memory composites[D].Harbin:Harbin Institute of Technology, 2017. |
[14] | QI X, YAO X, DENG S, et al.Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites[J].Journal of Materials Chemistry A, 2014, 2(7):2240-2249. |
[15] | JUNG Y C, SO H H, CHO J W.Water responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane[J].Journal of Macromolecular Science Part B, 2006, 45(4):453-461. |
[16] | YANG B, LI C, LEE C M, et al.On the effects of moisture in a polyurethane shape memory polymer[J].Smart Materials & Structures, 2004, 13(1):191. |
[17] | HUANG W M, YANG B, AN L, et al.Water-driven programmable polyurethane shape memory polymer:demonstration and me-chanism[J].Applied Physics Letters, 2005, 86(11):114105. |
[18] | LIU Y, LI Y, YANG G, et al.Multi-stimuli responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals[J].ACS Appl.Mater.Interfaces, 2015, 7(7):4118. |
[19] | BAI Y, CHEN X.A fast water-induced shape memory polymer based on hydroxyethyl cellulose/graphene oxide composites[J].Composites Part A:Applied Science & Manufacturing, 2017, 103:9-16. |
[20] | HAN C H, HAN D D, JIANG H B, et al.Facile fabrication of moisture responsive graphene actuators by moderate flash reduction of graphene oxides films[J].Optical Materials Express, 2017, 7(7):2617. |
[21] | XU G, CHEN J, ZHANG M, et al.An ultrasensitive moisture driven actuator based on small flakes of graphene oxide[J].Sensors & Actuators B Chemical, 2017, 242:418-422. |
[22] | WANG W, YAO L, CHENG C Y, et al.Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables[J].Science Advances, 2017, 3(5):e1601984. |
[23] | ANDY F.New fabric opens air vents with workout sweat[EB/OL].[2018-05-19].https://www.ucdavis.edu/news/new-fabric-opens-air-vents-workout-sweat. |
[24] | GE Y, CAO R, YE S, et al.A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients[J].Chemical Communications, 2018, 54(25):3126-3129. |
[25] | BAUER F, DENNELER S, WILLERT-PORADA M.Influence of temperature and humidity on the mechanical properties of Nafion® 117 polymer electrolyte membrane[J].Journal of Polymer Science Part B:Polymer Physics, 2005, 43(7):786-795. |
[26] | MA M, GUO L, ANDERSON D G, et al.Bio-inspired polymer composite actuator and generator driven by water gradients[J].Science, 2013, 339(6116):186-189. |
[27] | ZHANG L, LIANG H, JACOB J, et al.Erratum:photogated humidity-driven motility[J].Nature Communications, 2015, 6:7429. |
[28] | HU J, MENG H, LI G, et al.A review of stimuli-responsive polymers for smart textile applications[J].Smart Material Structures, 2012, 21(5):53001-53023. |
[29] | TURNER K.Nike sphere macro react[EB/OL].[2018-05-19].https://www.ponoko.com/blog/how-to-make/nike-sphere-macro-react. |
[30] | Move over, moisture-wicking whatever[EB/OL].[2018-05-19].http://www.atacamadry.com. |
[1] | 彭德其, 张寓川, 武洋, 俞天兰, 谭卓伟, 吴淑英, 陈莹, 唐明成, 彭建国. 换热管内插螺旋阻垢性能及污垢微观特征[J]. 化工学报, 2023, (): 1-10. |
[2] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[3] | 刘纳, 李俊明. 胀管对小型冷凝器微肋管内流动凝结换热特性的影响[J]. 化工学报, 0, (): 0-0. |
[4] | 李科, 文键, 王斯民. 不同热边界条件下板翅式换热器轴向导热对换热的影响[J]. 化工学报, 0, (): 5-0. |
[5] | 倪兵, 沈胜强, 李宜豪, 刘晓华, 李熠桥, 柳山林. 高盐海水中盐度对污垢沉积特性的影响[J]. 化工学报, 2019, 70(11): 4363-4369. |
[6] | 王皓显, 李剑锐, 胡海涛, 丁国良, 武春林, 陈慧, 邢占洋. 纵荡对板翅式换热器通道内液化天然气流动沸腾换热特性的影响分析[J]. 化工学报, 2018, 69(S2): 101-108. |
[7] | 周刊, 李蔚, 李俊业, 朱华, 盛况, 白光辉, 常浩. 微细通道内超亲水改性表面饱和沸腾的传热特性[J]. 化工学报, 2018, 69(S2): 82-88. |
[8] | 成赛凤, 梁彩华, 赵伟, 张小松. 疏水表面液滴合并弹跳过程的数值模拟[J]. 化工学报, 2018, 69(S2): 153-160. |
[9] | 刘洋, 韩吉田, 游怀亮. 基于SOFC/GT/TCO2复合动力循环和溴化锂制冷机的冷热电联供系统性能[J]. 化工学报, 2018, 69(S2): 341-349. |
[10] | 许嘉兴, 晁京伟, 李廷贤, 王如竹. 膨胀石墨/有机金属骨架复合吸附材料的制备及性能研究[J]. 化工学报, 2018, 69(S2): 492-499. |
[11] | 杜保周, 李慧君, 郭保仓, 孔令健, 刘志刚. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989. |
[12] | 辛慧, 陈斌, 周致富, 田加猛. 激光溶脂手术脉冲式制冷剂喷雾冷却数值研究[J]. 化工学报, 2018, 69(12): 4966-4971. |
[13] | 王东民, 董丽宁, 全晓军. 改性SiO2纳米颗粒沸腾沉积层的形成原理及其沸腾换热[J]. 化工学报, 2018, 69(10): 4200-4205. |
[14] | 袁金斗, 王彦博, 胡涵, 余雄江, 徐进良. 微小通道内不同润湿性表面流动冷凝传热[J]. 化工学报, 2018, 69(10): 4156-4166. |
[15] | 梁灵娇, 刘金平, 许雄文. 用于高热通量电子散热的平板环路重力热管[J]. 化工学报, 2018, 69(10): 4231-4238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||