化工学报 ›› 2015, Vol. 66 ›› Issue (11): 4412-4417.DOI: 10.11949/j.issn.0438-1157.20150532

• 流体力学与传递现象 • 上一篇    下一篇

基于Lattice-Boltzmann方法的纳米颗粒多孔介质导热特性

阚安康, 康利云, 曹丹, 王冲   

  1. 上海海事大学商船学院, 上海 201306
  • 收稿日期:2015-04-27 修回日期:2015-07-08 出版日期:2015-11-05 发布日期:2015-11-05
  • 通讯作者: 阚安康
  • 基金资助:

    上海市自然科学基金项目(15ZR1419900)。

Thermal conduction characteristic of nano-granule porous material using lattice-Boltzmann method

KAN Ankang, KANG Liyun, CAO Dan, WANG Chong   

  1. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China
  • Received:2015-04-27 Revised:2015-07-08 Online:2015-11-05 Published:2015-11-05
  • Supported by:

    supported by the Natural Science Foundation of Shanghai (15ZR1419900).

摘要:

为研究气凝胶纳米颗粒的导热特性,提出了一种基于随机统计原理的构造气凝胶多孔介质介观尺度三维物理模型的方法。模型中颗粒空间分布、粒径分布及孔隙率可以根据实际气凝胶微尺度结构数据调整。基于所构造的物理模型,采用D3Q15LBM进行了数值模拟。分析了颗粒尺寸、孔隙率等因素对气凝胶导热性能的影响规律,即在既定孔隙率下,热导率随粒径增大而减小;既定粒径下,随孔隙率的递增热导率先下降后上升;颗粒尺寸不均匀性对热导率的影响甚大。模拟与实验结果相吻合。研究工作对优化气凝胶导热性能,提高其有效热导率的预测精度具有参考价值。

关键词: 气凝胶, 热导率, 格子Boltzmann方法, 介观尺度, 物理模型

Abstract:

To study the thermal property of silica aerogel, a method is proposed for constructing three-dimensional mesoscopic physical model of nanoparticle porous materials, based on the random statistical theory. The spatial distribution of particles, particle size and porosity can be adjusted according to actual microscopic information of the porous material. D3Q15LBM model is employed to perform numerical simulation and analysis in mesoscopic scale. And the influence of particle diameter, porosity and other factors on thermal conductivity of porous media is analyzed. That is, the thermal conductivity will decrease with the increase of particle size for constant porosity; the thermal conductivity falls and then rises as the porosity increases for constant particle size; the uniformity of particle size plays an important role on the thermal property. The simulation results are nearly the same with the experimental ones. The research will be an excellent reference for optimization of thermal performance and prediction of effective thermal conductivity for aerogels.

Key words: aerogel, thermal conductivity, lattice-Boltzmann method, mesoscopic scale, physical model

中图分类号: