化工学报 ›› 2022, Vol. 73 ›› Issue (7): 2757-2773.DOI: 10.11949/0438-1157.20220353
高端辉1(),肖卫强2(),高峰1,夏倩2,汪曼秋1,卢昕博2,詹晓力1,张庆华1()
收稿日期:
2022-03-09
修回日期:
2022-04-20
出版日期:
2022-07-05
发布日期:
2022-08-01
通讯作者:
肖卫强,张庆华
作者简介:
高端辉(1998—),男,博士研究生,Duanhui GAO1(),Weiqiang XIAO2(),Feng GAO1,Qian XIA2,Manqiu WANG1,Xinbo LU2,Xiaoli ZHAN1,Qinghua ZHANG1()
Received:
2022-03-09
Revised:
2022-04-20
Online:
2022-07-05
Published:
2022-08-01
Contact:
Weiqiang XIAO,Qinghua ZHANG
摘要:
气凝胶是一类以空气为分散介质的干态凝胶材料,具有由纳米粒子随机聚集并相互连接而成的复杂三维网络结构,也因此集低密度、高比表面积、高孔隙率、低热导率等优异性能于一身,在众多尖端及民生领域显示出巨大的应用潜力。作为一种高性能材料,聚酰亚胺(polyimide, PI)已被广泛用于航空航天、防火织物等诸多领域,由其制成的PI气凝胶具有较高的机械强度,对传统脆弱易碎的无机气凝胶显示出明显的替代趋势,也因此得到了研究人员的广泛关注。本文主要介绍了PI基气凝胶材料的研究进展,从PI气凝胶的制备方法、改性方法及应用等角度进行综述,并对其未来的发展进行展望,以期为后续研究提供借鉴与参考。
中图分类号:
高端辉, 肖卫强, 高峰, 夏倩, 汪曼秋, 卢昕博, 詹晓力, 张庆华. 聚酰亚胺基气凝胶材料的制备与应用[J]. 化工学报, 2022, 73(7): 2757-2773.
Duanhui GAO, Weiqiang XIAO, Feng GAO, Qian XIA, Manqiu WANG, Xinbo LU, Xiaoli ZHAN, Qinghua ZHANG. Preparation and application of polyimide-based aerogels[J]. CIESC Journal, 2022, 73(7): 2757-2773.
单体 | 基本性质 | 热性能 | 力学性能 | 文献 | ||||
---|---|---|---|---|---|---|---|---|
二胺 | 二酐 | 密度/ (g/cm3) | 比表面积/ (m2/g) | 孔隙率/% | 体积收缩率/% | |||
ODA+1,3-丙二胺 (摩尔比1∶2) | BPDA | 0.0553 | 317 | — | 23.8 | λ: 0.033 W/(m·K) | 压缩模量3.273 | [ |
ODA+BAPOPP | BPDA | 0.124~0.172 | 29~446 | — | 8.0~15.0 | λ: 0.033~0.049 W/(m·K);Td5%:约550.0℃ | 杨氏模量28.000~34.000 MPa | [ |
ODA+6FAPB (摩尔比1∶1) | BPDA | 0.175 | 402 | 88.9 | 18.6 | Td:590.0℃ | 杨氏模量16.200 MPa | [ |
ODA+TFMB (摩尔比1∶1) | BPDA | 0.116 | 388 | 92.4 | 8.3 | Td5%:570.8℃ | 杨氏模量18.350 MPa | [ |
DMBZ+BAP10 (摩尔比3∶1) | BPDA | 0.204 | 328 | 85.2 | 25.0 | Td:507.0℃ | 压缩模量46.500 MPa; 拉伸模量50.500 MPa | [ |
表1 改变分子结构制备的改性PI气凝胶材料的性能
Table 1 Properties of modified PI aerogel prepared by adjusting molecular structure
单体 | 基本性质 | 热性能 | 力学性能 | 文献 | ||||
---|---|---|---|---|---|---|---|---|
二胺 | 二酐 | 密度/ (g/cm3) | 比表面积/ (m2/g) | 孔隙率/% | 体积收缩率/% | |||
ODA+1,3-丙二胺 (摩尔比1∶2) | BPDA | 0.0553 | 317 | — | 23.8 | λ: 0.033 W/(m·K) | 压缩模量3.273 | [ |
ODA+BAPOPP | BPDA | 0.124~0.172 | 29~446 | — | 8.0~15.0 | λ: 0.033~0.049 W/(m·K);Td5%:约550.0℃ | 杨氏模量28.000~34.000 MPa | [ |
ODA+6FAPB (摩尔比1∶1) | BPDA | 0.175 | 402 | 88.9 | 18.6 | Td:590.0℃ | 杨氏模量16.200 MPa | [ |
ODA+TFMB (摩尔比1∶1) | BPDA | 0.116 | 388 | 92.4 | 8.3 | Td5%:570.8℃ | 杨氏模量18.350 MPa | [ |
DMBZ+BAP10 (摩尔比3∶1) | BPDA | 0.204 | 328 | 85.2 | 25.0 | Td:507.0℃ | 压缩模量46.500 MPa; 拉伸模量50.500 MPa | [ |
单体 | 交联剂 | 基本性质 | 热性能 | 力学性能 | 文献 | ||
---|---|---|---|---|---|---|---|
密度/(g/cm3) | 孔隙率/% | 体积收 缩率/% | |||||
ODA+BPDA | PAPSQ | 0.120 | 90.0 | 1.0 | λ: 0.0300 W/(m·K) Td: 560.0℃ | 杨氏模量43.18 MPa | [ |
(ODA+DMBZ)+BPDA | PMA | 0.120~0.170 | >88.0 | — | — | 杨氏模量2.00~60.00 MPa | [ |
DMBZ+BPDA | NH2-HBPSi(5%,质量分数) | 0.121 | 90.1 | 11.7 | λ: 0.0326 W/(m·K) | 杨氏模量25.30 MPa | [ |
ODA+BPDA | PVPMS | 0.360 | — | 17.3 | λ: 0.0400 W/(m·K) | 弹性模量12.33 MPa | [ |
ODA+BPDA | BTMSPA+硅溶胶(3 ml) | 0.120 | — | 17.1 | λ: 0.0330 W/(m·K) Td: 537.0℃ | 杨氏模量9.20 MPa | [ |
DMBZ+BPDA | mCNTs(1.0%,质量分数) | 0.181 | 87.1 | 40.0 | Td5%: 503.0℃ | 比模量715.50 J/g | [ |
ODA+PMDA | 石墨烯(5%,质量分数)+ 蒙脱土(10%,质量分数) | 0.090 | — | 21.1 | Td5%: 512.0℃ | 模量14.00 MPa | [ |
表2 部分交联型PI气凝胶的性能
Table 2 Performance of some crosslinked PI aerogels
单体 | 交联剂 | 基本性质 | 热性能 | 力学性能 | 文献 | ||
---|---|---|---|---|---|---|---|
密度/(g/cm3) | 孔隙率/% | 体积收 缩率/% | |||||
ODA+BPDA | PAPSQ | 0.120 | 90.0 | 1.0 | λ: 0.0300 W/(m·K) Td: 560.0℃ | 杨氏模量43.18 MPa | [ |
(ODA+DMBZ)+BPDA | PMA | 0.120~0.170 | >88.0 | — | — | 杨氏模量2.00~60.00 MPa | [ |
DMBZ+BPDA | NH2-HBPSi(5%,质量分数) | 0.121 | 90.1 | 11.7 | λ: 0.0326 W/(m·K) | 杨氏模量25.30 MPa | [ |
ODA+BPDA | PVPMS | 0.360 | — | 17.3 | λ: 0.0400 W/(m·K) | 弹性模量12.33 MPa | [ |
ODA+BPDA | BTMSPA+硅溶胶(3 ml) | 0.120 | — | 17.1 | λ: 0.0330 W/(m·K) Td: 537.0℃ | 杨氏模量9.20 MPa | [ |
DMBZ+BPDA | mCNTs(1.0%,质量分数) | 0.181 | 87.1 | 40.0 | Td5%: 503.0℃ | 比模量715.50 J/g | [ |
ODA+PMDA | 石墨烯(5%,质量分数)+ 蒙脱土(10%,质量分数) | 0.090 | — | 21.1 | Td5%: 512.0℃ | 模量14.00 MPa | [ |
图8 无模板自组装策略制备的无氟疏水型PI气凝胶的疏水特性[89]
Fig.8 Hydrophobic properties of fluorine-free hydrophobic PI aerogel prepared by template-free self-assembly strategy[89]
1 | Maleki H, Durães L, Portugal A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications[J]. Microporous and Mesoporous Materials, 2014, 197: 116-129. |
2 | Cheng Y, Zhang X, Qin Y, et al. Super-elasticity at 4 K of covalently crosslinked polyimide aerogels with negative Poisson's ratio[J]. Nature Communications, 2021, 12: 4092. |
3 | Maleki H. Recent advances in aerogels for environmental remediation applications: a review[J]. Chemical Engineering Journal, 2016, 300: 98-118. |
4 | Zhan C, Jana S C. Shrinkage reduced polyimide-graphene oxide composite aerogel for oil absorption[J]. Microporous and Mesoporous Materials, 2020, 307: 110501. |
5 | Deng Y R, Pan Y L, Zhang Z X, et al. Novel thermotolerant and flexible polyimide aerogel separator achieving advanced lithium-ion batteries[J]. Advanced Functional Materials, 2022, 32(4): 2106176. |
6 | Shi Z Q, Gao H C, Feng J, et al. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration[J]. Angewandte Chemie, 2014, 126(21): 5484-5488. |
7 | Gu J, Hu C S, Zhang W W, et al. Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration[J]. Applied Catalysis B: Environmental, 2018, 237: 482-490. |
8 | Zhao X F, Zhang J, Wang X Q, et al. Polyimide aerogels crosslinked with MWCNT for enhanced visible-light photocatalytic activity[J]. Applied Surface Science, 2019, 478: 266-274. |
9 | Zhuang Y B, Seong J G, Lee Y M. Polyimides containing aliphatic/alicyclic segments in the main chains[J]. Progress in Polymer Science, 2019, 92: 35-88. |
10 | Bogert M T. 4-Amino-o-phthalic aid and some of its derivatives[J]. Journal of the American Chemical Society, 1908, 30: 1135-1144. |
11 | Rhine W, Wang J, Begag R. Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same: US7074880[P]. 2006. |
12 | 郑帅, 刘雪强. 聚酰亚胺气凝胶的研究进展[J]. 产业用纺织品, 2019, 37(12): 1-6. |
Zheng S, Liu X Q. Research progress of polyimide aerogels[J]. Technical Textiles, 2019, 37(12): 1-6. | |
13 | Zhang L, Wu J T, Zhang X M, et al. Multifunctional, marvelous polyimide aerogels as highly efficient and recyclable sorbents[J]. RSC Advances, 2015, 5(17): 12592-12596. |
14 | Liu M Y, Wang Y X, Ji J Q, et al. A facile method to fabricate the polyimide aerogels with controllable microstructure by freeze-drying[J]. Materials Letters, 2020, 267: 127558. |
15 | Chidambareswarapattar C, Larimore Z, Sotiriou-Leventis C, et al. One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons[J]. Journal of Materials Chemistry, 2010, 20(43): 9666. |
16 | Chidambareswarapattar C, Xu L, Sotiriou-Leventis C, et al. Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons[J]. RSC Advances, 2013, 3(48): 26459. |
17 | Yang G J, Ning T L, Zhao W, et al. Robust ambient pressure dried polyimide aerogels and their graphene oxide directed growth of 1D-2D nanohybrid aerogels using water as the only solvent[J]. RSC Advances, 2017, 7(26): 16210-16216. |
18 | Kim J, Kwon J, Kim S I, et al. One-step synthesis of nano-porous monolithic polyimide aerogel[J]. Microporous and Mesoporous Materials, 2016, 234: 35-42. |
19 | Leventis N, Sotiriou-Leventis C, Mohite D P, et al. Polyimide aerogels by ring-opening metathesis polymerization (ROMP)[J]. Chemistry of Materials, 2011, 23(8): 2250-2261. |
20 | Wu Q, Pan L, Wang H, et al. A green and scalable method for producing high-performance polyimide aerogels using low-boiling-point solvents and sublimation drying[J]. Polymer Journal, 2016, 48(2): 169-175. |
21 | Ning T L, Yang G J, Zhao W, et al. One-pot solvothermal synthesis of robust ambient-dried polyimide aerogels with morphology-enhanced superhydrophobicity for highly efficient continuous oil/water separation[J]. Reactive and Functional Polymers, 2017, 116: 17-23. |
22 | Mosanenzadeh S G, Alshrah M, Saadatnia Z, et al. Double dianhydride backbone polyimide aerogels with enhanced thermal insulation for high-temperature applications[J]. Macromolecular Materials and Engineering, 2020, 305(4): 1900777. |
23 | Kim J, Kwon J, Kim M, et al. Low-dielectric-constant polyimide aerogel composite films with low water uptake[J]. Polymer Journal, 2016, 48(7): 829-834. |
24 | Xu L L, Xiao L H, Jia P, et al. Lightweight and ultrastrong polymer foams with unusually superior flame retardancy[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26392-26399. |
25 | Teo N, Gu Z P, Jana S C. Polyimide-based aerogel foams, via emulsion-templating[J]. Polymer, 2018, 157: 95-102. |
26 | Paraskevopoulou P, Chriti D, Raptopoulos G, et al. Synthetic polymer aerogels in particulate form[J]. Materials (Basel, Switzerland), 2019, 12(9): 1543. |
27 | Jin C X, Kulkarni A, Teo N, et al. Fabrication of pill-shaped polyimide aerogel particles using microfluidic flows[J]. Industrial & Engineering Chemistry Research, 2021, 60(1): 361-370. |
28 | Yang J M, Wang H Q, Zhou B, et al. Versatile direct writing of aerogel-based sol-gel inks[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(6): 2129-2139. |
29 | Teo N, Joo P, Amis E J, et al. Development of intricate aerogel articles using fused filament fabrication[J]. ACS Applied Polymer Materials, 2019, 1(7): 1749-1756. |
30 | Mosanenzadeh S G, Saadatnia Z, Shi F, et al. Structure to properties relations of BPDA and PMDA backbone hybrid diamine polyimide aerogels[J]. Polymer, 2019, 176: 213-226. |
31 | Li B Y, Jiang S J, Yu S W, et al. Co-polyimide aerogel using aromatic monomers and aliphatic monomers as mixing diamines[J]. Journal of Sol-Gel Science and Technology, 2018, 88(2): 386-394. |
32 | Wu S, Du A, Huang S M, et al. Solution-processable polyimide aerogels with high hydrophobicity[J]. Materials Letters, 2016, 176: 118-121. |
33 | Wu S, Du A, Huang S M, et al. Effects of monomer rigidity on the microstructures and properties of polyimide aerogels cross-linked with low cost aminosilane[J]. RSC Advances, 2016, 6(27): 22868-22877. |
34 | Guo H Q, Meador M A B, McCorkle L, et al. Tailoring properties of cross-linked polyimide aerogels for better moisture resistance, flexibility, and strength[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5422-5429. |
35 | Xi S, Wang X D, Zhang Z, et al. Influence of diamine rigidity and dianhydride rigidity on the microstructure, thermal and mechanical properties of cross-linked polyimide aerogels[J]. Journal of Porous Materials, 2021, 28(3): 717-725. |
36 | Qiao S Y, Kang S, Hu Z M, et al. Moisture-resistance, mechanical and thermal properties of polyimide aerogels[J]. Journal of Porous Materials, 2020, 27(1): 237-247. |
37 | Wu T T, Dong J, Gan F, et al. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups[J]. Applied Surface Science, 2018, 440: 595-605. |
38 | Vivod S L, Meador M A B, Pugh C, et al. Toward improved optical transparency of polyimide aerogels[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8622-8633. |
39 | Pantoja M, Boynton N, Cavicchi K A, et al. Increased flexibility in polyimide aerogels using aliphatic spacers in the polymer backbone[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 9425-9437. |
40 | Meador M A B, Agnello M, McCorkle L, et al. Moisture-resistant polyimide aerogels containing propylene oxide links in the backbone[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29073-29079. |
41 | Shen D X, Liu J G, Yang H X, et al. Intrinsically highly hydrophobic semi-alicyclic fluorinated polyimide aerogel with ultralow dielectric constants[J]. Chemistry Letters, 2013, 42(10): 1230-1232. |
42 | Viggiano R P, Williams J C, Schiraldi D A, et al. Effect of bulky substituents in the polymer backbone on the properties of polyimide aerogels[J]. ACS Applied Materials & Interfaces, 2017, 9(9): 8287-8296. |
43 | Wang Y X, He T J, Liu M Y, et al. Fast and efficient oil-water separation under harsh conditions of the flexible polyimide aerogel containing benzimidazole structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581: 123809. |
44 | Lee D H, Jo M J, Han S W, et al. Polyimide aerogel with controlled porosity: solvent-induced synergistic pore development during solvent exchange process[J]. Polymer, 2020, 205: 122879. |
45 | Teo N, Jana S C. Solvent effects on tuning pore structures in polyimide aerogels[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(29): 8581-8590. |
46 | Xu G F, Li M J, Wu T T, et al. Highly compressible and anisotropic polyimide aerogels containing aramid nanofibers[J]. Reactive and Functional Polymers, 2020, 154: 104672. |
47 | Zhang X, Zhao X Y, Xue T T, et al. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation[J]. Chemical Engineering Journal, 2020, 385: 123963. |
48 | Yuan S W, Yu Z, Wu P, et al. Properties of gradient polyimide aerogels prepared through layer-by-layer assembly[J]. Polymer Engineering & Science, 2020, 60(9): 2292-2300. |
49 | Meador M A B, Malow E J, Silva R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 536-544. |
50 | Simón-Herrero C, Chen X Y, Ortiz M L, et al. Linear and crosslinked polyimide aerogels: synthesis and characterization[J]. Journal of Materials Research and Technology, 2019, 8(3): 2638-2648. |
51 | Jiang Y M, Zhang T Y, Wang K, et al. Synthesis and characterization of rigid and thermostable polyimide aerogel crosslinked with tri(3-aminophenyl)phosphine oxide[J]. Journal of Porous Materials, 2017, 24(5): 1353-1362. |
52 | Shen D X, Liu J G, Yang H X, et al. Highly thermally resistant and flexible polyimide aerogels containing rigid-rod biphenyl, benzimidazole, and triphenylpyridine moieties: synthesis and characterization[J]. Chemistry Letters, 2013, 42(12): 1545-1547. |
53 | Kawagishi K, Saito H, Furukawa H, et al. Superior nanoporous polyimides via supercritical CO2 drying of jungle-gym-type polyimide gels[J]. Macromolecular Rapid Communications, 2007, 28(1): 96-100. |
54 | Wu Y W, Ye M F, Zhang W C, et al. Polyimide aerogels crosslinked through cyclic ladder-like and cage polyamine functionalized polysilsesquioxanes[J]. Journal of Applied Polymer Science, 2017, 134(37): 45296. |
55 | Guo H Q, Meador M A B, McCorkle L S, et al. Poly(maleic anhydride) cross-linked polyimide aerogels: synthesis and properties[J]. RSC Advances, 2016, 6(31): 26055-26065. |
56 | Meador M A B, Alemán C R, Hanson K, et al. Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels[J]. ACS Applied Materials & Interfaces, 2015, 7(2): 1240-1249. |
57 | Zhang Z X, Pan Y L, Gong L L, et al. Mechanically strong polyimide aerogels cross-linked with low-cost polymers[J]. RSC Advances, 2021, 11(18): 10827-10835. |
58 | Wu T T, Dong J, de France K, et al. Fabrication of polyimide aerogels cross-linked by a cost-effective amine-functionalized hyperbranched polysiloxane (NH2-HBPSi)[J]. ACS Applied Polymer Materials, 2020, 2(9): 3876-3885. |
59 | Zhang Z, Wang X D, Zu G Q, et al. Effect of different chemical liquid deposition methods on the microstructure and properties of polyimide-polyvinylpolymethylsiloxane composite aerogels[J]. The Journal of Supercritical Fluids, 2020, 160: 104811. |
60 | Zhang Z, Wang X D, Liu T, et al. Properties improvement of linear polyimide aerogels via formation of doubly cross-linked polyimide-polyvinylpolymethylsiloxane network structure[J]. Journal of Non-Crystalline Solids, 2021, 559: 120679. |
61 | Pei X L, Zhai W T, Zheng W G. Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(44): 13375-13383. |
62 | Xi S, Wang X D, Liu T, et al. Moisture-resistant and mechanically strong polyimide-polymethylsilsesquioxane hybrid aerogels with tunable microstructure[J]. Macromolecular Materials and Engineering, 2021, 306(4): 2000612. |
63 | Liu P, Tran T Q, Fan Z, et al. Formation mechanisms and morphological effects on multi-properties of carbon nanotube fibers and their polyimide aerogel-coated composites[J]. Composites Science and Technology, 2015, 117: 114-120. |
64 | Fan W, Zuo L Z, Zhang Y F, et al. Mechanically strong polyimide/carbon nanotube composite aerogels with controllable porous structure[J]. Composites Science and Technology, 2018, 156: 186-191. |
65 | Zhang D L, Lin Y, Wang W, et al. Mechanically strong polyimide aerogels cross-linked with dopamine-functionalized carbon nanotubes for oil absorption[J]. Applied Surface Science, 2021, 543: 148833. |
66 | Wang Y N, Ge Q Y, Chen X L, et al. Ultralight and flexible MWNTs/polyimide hybrid aerogels for elastic conductors[J]. Macromolecular Materials and Engineering, 2017, 302(9): 1700082. |
67 | Zhang B, Wu P, Zou H W, et al. Morphology and properties of polyimide/multi-walled carbon nanotubes composite aerogels[J]. High Performance Polymers, 2018, 30(3): 292-302. |
68 | Wang Y X, He T J, Cheng Z, et al. Mechanically strong and tough polyimide aerogels cross-linked with amine functionalized carbon nanotubes synthesized by fluorine displacement reaction[J]. Composites Science and Technology, 2020, 195: 108204. |
69 | Zhou Y, Wang S J, Li D S, et al. Lightweight and recoverable ANF/rGO/PI composite aerogels for broad and high-performance microwave absorption[J]. Composites Part B: Engineering, 2021, 213: 108701. |
70 | Zuo L Z, Fan W, Zhang Y F, et al. Graphene/montmorillonite hybrid synergistically reinforced polyimide composite aerogels with enhanced flame-retardant performance[J]. Composites Science and Technology, 2017, 139: 57-63. |
71 | Kim M, Eo K, Lim H J, et al. Low shrinkage, mechanically strong polyimide hybrid aerogels containing hollow mesoporous silica nanospheres[J]. Composites Science and Technology, 2018, 165: 355-361. |
72 | Fan W, Zhang X, Zhang Y, et al. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature[J]. Composites Science and Technology, 2019, 173: 47-52. |
73 | Hou X B, Li Y, Luo X G, et al. SiC whiskers-reinforced polyimide aerogel composites with robust compressive properties and efficient thermal insulation performance[J]. Journal of Applied Polymer Science, 2021, 138(8): 49892. |
74 | Zhang X H, Ni X X, Li C X, et al. Co-gel strategy for preparing hierarchically porous silica/polyimide nanocomposite aerogel with thermal insulation and flame retardancy[J]. Journal of Materials Chemistry A, 2020, 8(19): 9701-9712. |
75 | 刘盼盼, 贾振新, 吕军军, 等. 有机-无机复合气凝胶研究进展[J]. 化学通报, 2019, 82(10): 867-877. |
Liu P P, Jia Z X, Lyu J J, et al. An overview on organic-inorganic composite aerogels[J]. Chemistry, 2019, 82(10): 867-877. | |
76 | Zhuo L H, Ma C, Xie F, et al. Methylcellulose strengthened polyimide aerogels with excellent oil/water separation performance[J]. Cellulose, 2020, 27(13): 7677-7689. |
77 | 陈宇卓, 欧忠文, 刘朝辉, 等. 隔热材料SiO2气凝胶改性研究进展[J]. 化工新型材料, 2017, 45(8): 45-47. |
Chen Y Z, Ou Z W, Liu Z H, et al. Review on the development of silica aerogel insulation materials' modification[J]. New Chemical Materials, 2017, 45(8): 45-47. | |
78 | Fei Z F, Yang Z C, Chen G B, et al. Preparation and characterization of glass fiber/polyimide/SiO2 composite aerogels with high specific surface area[J]. Journal of Materials Science, 2018, 53(18): 12885-12893. |
79 | Fei Z F, Yang Z C, Chen G B, et al. Preparation of tetraethoxysilane-based silica aerogels with polyimide cross-linking from 3, 3', 4, 4'-biphenyltetracarboxylic dianhydride and 4, 4'-oxydianiline[J]. Journal of Sol-Gel Science and Technology, 2018, 85(3): 506-513. |
80 | Zhang X H, Ni X X, He M Y, et al. A synergistic strategy for fabricating an ultralight and thermal insulating aramid nanofiber/polyimide aerogel[J]. Materials Chemistry Frontiers, 2021, 5(2): 804-816. |
81 | Zhao X Y, Yang F, Wang Z C, et al. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers[J]. Composites Part B: Engineering, 2020, 182: 107624. |
82 | Qian Z C, Wang Z, Chen Y, et al. Superelastic and ultralight polyimide aerogels as thermal insulators and particulate air filters[J]. Journal of Materials Chemistry A, 2018, 6(3): 828-832. |
83 | Li D W, Liu H Z, Shen Y, et al. Preparation of PI/PTFE-PAI composite nanofiber aerogels with hierarchical structure and high-filtration efficiency[J]. Nanomaterials (Basel, Switzerland), 2020, 10(9): 1806. |
84 | Yang F, Zhao X Y, Xue T T, et al. Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment[J]. Science China Materials, 2021, 64(5): 1267-1277. |
85 | Liu H, Chen X Y, Zheng Y J, et al. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications[J]. Advanced Functional Materials, 2021, 31(13): 2008006. |
86 | Guo H Q, Meador M A B, McCorkle L, et al. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 546-552. |
87 | Meador M A B, McMillon E, Sandberg A, et al. Dielectric and other properties of polyimide aerogels containing fluorinated blocks[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6062-6068. |
88 | Zhang X H, Li W, Song P Y, et al. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel[J]. Chemical Engineering Journal, 2020, 381: 122784. |
89 | Li X, Wang J, Zhao Y B, et al. Template-free self-assembly of fluorine-free hydrophobic polyimide aerogels with lotus or petal effect[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16901-16910. |
90 | Chen Y, Shao G F, Kong Y, et al. Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2 capture[J]. Chemical Engineering Journal, 2017, 322: 1-9. |
91 | Mosanenzadeh S G, Karamikamkar S, Saadatnia Z, et al. PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications[J]. Separation and Purification Technology, 2020, 250: 117279. |
92 | Wang Y J, Cui Y, Shao Z Y, et al. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments[J]. Chemical Engineering Journal, 2020, 390: 124623. |
93 | Li X, Dong G Q, Liu Z W, et al. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol-gel confined transition strategy[J]. ACS Nano, 2021, 15(3): 4759-4768. |
94 | Li M M, Gan F, Dong J, et al. Facile preparation of continuous and porous polyimide aerogel fibers for multifunctional applications[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10416-10427. |
95 | Dai Y, Wu X Y, Liu Z S, et al. Highly sensitive, robust and anisotropic MXene aerogels for efficient broadband microwave absorption[J]. Composites Part B: Engineering, 2020, 200: 108263. |
96 | Mi H Y, Jing X, Meador M A B, et al. Triboelectric nanogenerators made of porous polyamide nanofiber mats and polyimide aerogel film: output optimization and performance in circuits[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30596-30606. |
97 | Saadatnia Z, Mosanenzadeh S G, Esmailzadeh E, et al. A high performance triboelectric nanogenerator using porous polyimide aerogel film[J]. Scientific Reports, 2019, 9: 1370. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[13] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[14] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 462
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1037
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||