1 |
RemskarM, VirsekM, JesihA. WS2 nanobuds as a new hybrid nanomaterial[J]. Nano Letters, 2008, 8(1): 76-80.
|
2 |
LinJ Y, ZhangR X, YeW Y, et al. Nano-WS2 embedded PES membrane with improved fouling and permselectivity[J]. Journal of Colloid & Interface Science, 2013, 396(6): 120-128.
|
3 |
DuanJ J, ChenS, ChambersB A, et al. 3D WS2 nanolayers@heteroatom‐doped graphene films as hydrogen evolution catalyst electrodes[J]. Advanced Materials, 2015, 27(28): 4234-4241.
|
4 |
ZhouL Y, YanS C, PanL J, et al. A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries[J]. Nano Research, 2016, 9(3): 857-865.
|
5 |
MaT, ZhangT, GaoP G, et al. Synthesis and properties of ultrahigh molecular weight polyethylene/WS₂ nanoparticle fiber for bullet-proof materials[J]. Chinese Science Bulletin, 2013, 58(8): 945-948.
|
6 |
WuN, HuN N, ZhouG B, et al. Tribological properties of lubricating oil with micro/nano-scale WS2 particles[J]. Journal of Experimental Nanoscience, 2018, 13(1): 1-12.
|
7 |
ZhengD, WuY P, LiZ Y, et al. Tribological properties of WS2/graphene nanocomposites as lubricating oil additives[J]. RSC Advances, 2017, 7(23): 14060-14068.
|
8 |
杨士钊, 胡建强, 谢凤, 等. 低纳米二硫化钨含量润滑油抗磨性能[J]. 石油学报: 石油加工, 2017, 33(3): 543-548.
|
|
YangS Z, HuJ Q, XieF, et al. Anti-wear properties of low nano-WS2 content lubricant [J]. Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(3): 543-548.
|
9 |
李长生, 于云, 刘艳清, 等. WS2纳米颗粒的合成及摩擦学性能研究[J]. 无机化学学报, 2008, 24(2): 275-279.
|
|
LiC S, YuY, LiuY Q, et al. Synthesis and tribological properties of WS2 nanoparticles[J]. Chinese Journal of Inorganic Chemistry, 2008, 24(2): 275-279.
|
10 |
MaharajD, BhushanB. Effect of MoS2, and WS2, nanotubes on nanofriction and wear reduction in dry and liquid environments[J]. Tribology Letters, 2013, 49(2): 323-339.
|
11 |
RatoiM, NisteV B, WslkerJ, et al. Mechanism of action of WS2, lubricant nanoadditives in high-pressure contacts[J]. Tribology Letters, 2013, 52(1): 81-91.
|
12 |
LiS P, DengJ X, YanG Y, et al. Microstructure, mechanical properties and tribological performance of TiSiN–WS2, hard-lubricant coatings[J]. Applied Surface Science, 2014, 309(4): 209-217.
|
13 |
ChenC B, MaoD H, ShiC, et al. Experimental study on the tribological characteristics of nanometer WS2 lubricating oil additive based on engine oil[J]. Advanced Materials Research, 2011, 328/329/330: 203-208.
|
14 |
AldanaP U, DassenoyF, VacherB, et al. WS2 nanoparticles anti-wear and friction reducing properties on rough surfaces in the presence of ZDDP additive[J]. Tribology International, 2016, 102: 213-221.
|
15 |
AldanaP U, Vacher, Béatrice, Le MogneT, et al. Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime[J]. Tribology Letters, 2014, 56(2): 249-258.
|
16 |
MujuM K, RadhakrishnaA. Wear of non-magnetic materials in the presence of a magnetic field[J]. Wear, 1980, 58(1): 49-58.
|
17 |
SenouciA, ZaidiH, FreneJ, et al. Damage of surfaces in sliding electrical contact copper/steel[J]. Applied Surface Science, 1999, 144/145(98): 287-291.
|
18 |
魏永辉, 张永振, 陈跃. 磁场干涉对不同磁属性材料干摩擦学特性的影响[J].机械工程学报, 2012, (12): 102-109.
|
|
WeiY H, ZhangZ Y, ChenY. Influence of magnetic field interfering on dry-sliding tribological characteristics of materials with different magnetic properties [J]. Journal of Mechanical Engineering, 2012, (12): 102-109.
|
19 |
张敏, 凤仪. 电流对碳纳米管-银-石墨复合材料摩擦磨损性能的影响[J]. 摩擦学学报, 2005, 25(4): 328-332.
|
|
ZhangM, FengY. Effect of electric current on the friction and wear behavior of carbon nanotubes-silver-graphite composite[J].Tribology, 2005, 25(4): 328-332.
|
20 |
JiangZ Q, FangJ H, ChenB S, et al. Effect of magnetic field on tribological properties of lubricating oils with and without tricresyl phosphate[J]. China Petroleum Processing & Petrochemical Technology, 2016, 18(3): 119-124.
|
21 |
JiangZ Q, FangJ H, ChenB S, et al. Improvement of magnetic field on tribological properties of lubricating oils with zinc butyloctyl dithiophosphate[J]. China Petroleum Processing & Petrochemical Technology, 2016, 18(4): 92-98.
|
22 |
石琛, 毛大恒, 毛向辉. 纳米二硫化钨颗粒的分散稳定性[J]. 中南大学学报(自然科学版), 2010, 41(2): 476-482.
|
|
ShiC, MaoD H, MaoX H. Dispersion stability of nano-tungsten disulfide particulates[J]. Journal of Central South University(Science and Technology), 2010, 41(2): 476-482.
|
23 |
陈汉林, 陈国需, 杜鹏飞, 等. 二硫化钨纳米粉体作为锂基润滑脂添加剂的摩擦学研究[J]. 摩擦学学报, 2015, 35(6): 651-657.
|
|
ChenH L, ChenG X, DuP F, et al. Tribology of nano-tungsten disulfide powder as an lubricating additive for lithium grease[J]. Tribology, 2015, 35(6): 651-657.
|
24 |
ZhangR C, QaioD, LiuX Q, et al. A facile and effective method to improve the dispersibility of WS2 nanosheets in PAO8 for the tribological performances[J]. Tribology International, 2018, 118: 60-70.
|
25 |
解挺, 闫照明, 杨婷婷, 等. 外加磁场对摩擦副摩擦学性能影响的研究进展[J]. 合肥工业大学学报(自然科学版), 2012, 35(12): 1601-1604.
|
|
XieT, YanZ M, YangT T, et al. Study progress of the effect of external magnetic field on tribological properties of friction pair[J]. Journal of Hefei University of Technology(Natural Science), 2012, 35(12): 1601-1604.
|
26 |
WeiY H, ZhangY Z, ChenY, et al. Impact of material permeability on friction and wear properties under the interference of DC steady magnetic field[J]. Tribology International, 2013, 57(4): 162-169.
|
27 |
XieG X, GuoD, LuoJ B. Lubrication under charged conditions[J]. Tribology International, 2015, 84: 22-35.
|
28 |
杨钊龙. 若干非铁磁材料的低维磁特性研究[D]. 兰州: 兰州大学, 2016.
|
|
YangZ L. Low-dimensional magnetic characteristics of several non-ferromagnetic materials[D]. Lanzhou: Lanzhou University, 2016.
|
29 |
HuoN J, LiY, KangJ, et al. Edge-states ferromagnetism of WS2 nanosheets[J]. Applied Physics Letters, 2014, 104(20): 2831-2836.
|
30 |
YangZ L, GaoD Q, ZhangJ, et al. Realization of high Curie temperature ferromagnetism in atomically thin MoS2 and WS2 nanosheets with uniform and flower-like morphology[J]. Nanoscale, 2014, 7(2): 650-658.
|
31 |
LiH P, LiuS, HuangS L, et al. Impurity-induced ferromagnetism and metallicity of WS2 monolayer[J]. Ceramics International, 2015, 42(2): 2364-2369.
|