化工学报 ›› 2023, Vol. 74 ›› Issue (1): 397-407.DOI: 10.11949/0438-1157.20221055
收稿日期:
2022-07-27
修回日期:
2022-11-28
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
马骧
作者简介:
曲国娟(1996—),女,博士研究生,1414539714@qq.com
基金资助:
Guojuan QU1(), Tao JIANG2, Tao LIU1, Xiang MA2()
Received:
2022-07-27
Revised:
2022-11-28
Online:
2023-01-05
Published:
2023-03-20
Contact:
Xiang MA
摘要:
金纳米团簇(金簇)凭借其丰富的光学性能和独特的纳米结构在催化、生物成像、传感、分析检测、药物传送、显示和照明等领域脱颖而出。然而,较低的量子产率和单一的发光波段严重阻碍了金簇的发展前景,制备可调谐、高量子产率、长寿命的金簇已成为目前该领域的研究重点。主客体包结、嵌入聚合物基质以及氢键、静电作用力等超分子策略已被广泛用于调控金簇的发光行为,有效地提高金簇发光量子产率。鉴于此,系统阐述了超分子策略调控金簇发光行为的机理,总结了近年来基于超分子策略构建及调控多功能金簇发光行为的研究进展,并展望了金簇发光领域面临的机遇与挑战。
中图分类号:
曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407.
Guojuan QU, Tao JIANG, Tao LIU, Xiang MA. Modulating luminescent behaviors of Au nanoclusters via supramolecular strategies[J]. CIESC Journal, 2023, 74(1): 397-407.
图2 (a) AuNCs@β-CD的合成过程及其负载在TiO2 NPs表面增强光催化活性,提高对有机污染物的降解速率[62]; (b) β-CD@AuNCs的合成过程及其对多巴胺和胆固醇的检测[63-64]; (c) 近红外β-CD@AuNCs的合成过程[65]; (d) β-CD作为配体合成近红外二区 (NIR-Ⅱ) 的金簇并用于追踪、标记蛋白,实现靶向肿瘤可视化过程[66]
Fig.2 (a) Synthesis of AuNCs@β-CD and loading on the surface of TiO2 NPs to enhance photocatalytic activity and improve the degradation rate of organic pollutants [62]; (b) Synthesis process of β-CD@AuNCs and its detections of dopamine and cholesterol [63-64]; (c) Synthesis process of near-infrared β-CD@AuNCs[65]; (d) Bright near-infrared second region (NIR-Ⅱ) AuNCs synthesized through β-CD as ligand and used to track labeled proteins to realize targeted tumor visualization[66]
图3 (a) 基于超分子组装策略构建发光纳米开关器,调控CC/DTT-AuNCs发光[75]; (b) 聚集诱导分子金簇荧光-磷光转换[76];(c) 组氨酸金簇与溴萘酰亚胺聚合物共同掺杂到聚乙烯醇基质中调控发光[77];(d) GSH-AuNCs及主客体超分子自组装策略构建温度、湿度双重响应的发光材料[78]
Fig.3 (a) Luminescent nanoswitches constructed based on supramolecular assembly strategy to regulate the luminescence of CC/DTT-AuNCs[75]; (b) Fluorescence-to-phosphorescence switching of molecular AuNCs induced by aggregation[76]; (c) AuNCs@histidine and poly-BrNpA doped into PVA matrix to regulate luminescence[77]; (d) GSH-AuNCs and host-guest supramolecular constructed temperature-humidity dual-responsive luminescent materials through self-assembly strategy[78]
图4 (a) ATT-AuNCs与精氨酸之间通过主客体相互作用增强水溶性金簇绿色发光[80];(b) 基于葫芦脲和FGGC-AuNCs表面配体间主客体包结策略实现在水溶液中点亮FGGC-AuNCs[82];(c) 壳聚糖介导的具有不同发光的Au(0)@Au(Ⅰ)-SG NCs在超分子作用力形成可逆化凝胶[84];(d) GSH@AuNCs作为交联剂构建水凝胶,并利用水凝胶丰富的氢键网络结构增强GSH@AuNCs发光[85]
Fig.4 (a) Enhanced green luminescence of water-soluble ATT-AuNCs through host-guest interaction between ATT-AuNCs and arginine[80]; (b) Brighten FGGC-AuNCs in aqueous solution based on host-guest inclusion strategy between CB and the surface ligands of FGGC-AuNCs[82]; (c) Chitosan mediated Au(0)@Au(Ⅰ)-SG NCs with different luminescence to form reversible gels under supramolecular forces[84]; (d) GSH@AuNCs as cross-linkers to construct hydrogels and utilize their abundant hydrogen bond network structures enhancing the luminescence of GSH@AuNCs[85]
1 | Chen S, Du W J, Qin C W L, et al. Assembly of the thiolated [Au1Ag22(S-adm)12]3+ superatom complex into a framework material through direct linkage by SbF6 - anions[J]. Angewandte Chemie International Edition, 2020, 59(19): 7542-7547. |
2 | Yang T Q, Dai S, Yang S Q, et al. Interfacial clustering-triggered fluorescence-phosphorescence dual solvoluminescence of metal nanoclusters[J]. The Journal of Physical Chemistry Letters, 2017, 8(17): 3980-3985. |
3 | Kong Y J, Yan Z P, Li S, et al. Photoresponsive propeller-like chiral AIE copper (Ⅰ) clusters[J]. Angewandte Chemie International Edition, 2020, 59(13): 5336-5340. |
4 | Jin L H, Shi L L, Shi W, et al. Fluorescence lifetime-based pH sensing by platinum nanoclusters[J]. Analyst, 2019, 144(11): 3533-3538. |
5 | Song Y B, Li Y W, Zhou M, et al. Ultrabright Au@Cu14 nanoclusters: 71.3% phosphorescence quantum yield in non-degassed solution at room temperature[J]. Science Advances, 2021, 7(2): eabd2091. |
6 | Zhang M M, Dong X Y, Wang Z Y, et al. Alkynyl-stabilized superatomic silver clusters showing circularly polarized luminescence[J]. Journal of the American Chemical Society, 2021, 143(16): 6048-6053. |
7 | Zheng W Y, Zhou B, Ren Z J, et al. Fluorescence-phosphorescence manipulation and atom probe observation of fully inorganic silver quantum clusters: imitating from and behaving beyond organic hosts[J]. Advanced Optical Materials, 2022, 10(2): 2101632. |
8 | Wang S S, Wang Y Y, Peng Y, et al. Exploring the antibacteria performance of multicolor Ag, Au, and Cu nanoclusters[J]. ACS Applied Materials & Interfaces, 2019, 11(8): 8461-8469. |
9 | George A, Maman M P, Bhattacharyya K, et al. Aggregation induced non-emissive-to-emissive switching of molecular platinum clusters[J]. Nanoscale, 2019, 11(13): 5914-5919. |
10 | Zhang C X, Gao Y C, Li H W, et al. Gold-platinum bimetallic nanoclusters for oxidase-like catalysis[J]. ACS Applied Nano Materials, 2020, 3(9): 9318-9328. |
11 | Han Z, Dong X Y, Luo P, et al. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency[J]. Science Advances, 2020, 6(6): eaay0107. |
12 | Wang C, Wang C X, Xu L, et al. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis[J]. Nanoscale, 2014, 6(3): 1775-1781. |
13 | Mishra S K, Raveendran S, Ferreira J M F, et al. In situ impregnation of silver nanoclusters in microporous chitosan-PEG membranes as an antibacterial and drug delivery percutaneous device[J]. Langmuir, 2016, 32(40): 10305-10316. |
14 | Zhang X D, Luo Z T, Chen J, et al. Ultrasmall Au10-12(SG)10-12 nanomolecules for high tumor specificity and cancer radiotherapy[J]. Advanced Materials, 2014, 26(26): 4565-4568. |
15 | Xu J, Sun F Y, Li Q, et al. Ultrasmall gold nanoclusters-enabled fabrication of ultrafine gold aerogels as novel self-supported nanozymes[J]. Small, 2022, 18(21): 2200525. |
16 | Sun Y N, Cai X, Hu W G, et al. Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters[J]. Science China Chemistry, 2021, 64(7): 1065-1075. |
17 | Liu H L, Hong G S, Luo Z T, et al. Atomic-precision gold clusters for NIR-Ⅱ imaging[J]. Advanced Materials, 2019, 31(46): 1901015. |
18 | Wang J, Wang Z Y, Li S J, et al. Carboranealkynyl-protected gold nanoclusters: size conversion and UV/vis-NIR optical properties[J]. Angewandte Chemie International Edition, 2021, 60(11): 5959-5964. |
19 | Li Z, Peng H B, Liu J L, et al. Plant protein-directed synthesis of luminescent gold nanocluster hybrids for tumor imaging[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 83-90. |
20 | Goswami U, Basu S, Paul A, et al. White light emission from gold nanoclusters embedded bacterial[J]. Journal of Materials Chemistry C, 2017, 5(47): 12360-12364. |
21 | Wei Y F, Luan W L, Gao F, et al. Supramolecules-guided synthesis of brightly near-infrared Au22 nanoclusters with aggregation-induced emission for bioimaging[J]. Particle & Particle Systems Characterization, 2019, 36(12): 1900314. |
22 | Yu Q, Gao P L, Zhang K Y, et al. Luminescent gold nanocluster-based sensing platform for accurate H2S detection in vitro and in vivo with improved anti-interference[J]. Light: Science & Applications, 2017, 6(12): e17107. |
23 | Londoño-Larrea P, Vanegas J P, Cuaran-Acosta D, et al. Water-soluble naked gold nanoclusters are not luminescent[J]. Chemistry-A European Journal, 2017, 23(34): 8137-8141. |
24 | Yu F F, Cao Z, He S Y, et al. Highly luminescent gold nanocluster assemblies for bioimaging in living organisms[J]. Chemical Communications, 2022, 58(6): 811-814. |
25 | Wang H B, Mao A L, Tao B B, et al. L-histidine-DNA interaction: a strategy for the improvement of the fluorescence signal of poly(adenine) DNA-templated gold nanoclusters[J]. Microchimica Acta, 2021, 188: 198. |
26 | Yang W M, Yang H F, Ding W H, et al. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method[J]. Ultrasonics Sonochemistry, 2016, 33: 106-117. |
27 | Zhou B, Yan D P. Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets[J]. Angewandte Chemie International Edition, 2019, 58(42): 15128-15135. |
28 | Cheng W, Wang L D, Zhou Y Y, et al. Blue iridium(Ⅲ) complexes with high internal quantum efficiency based on 4-(pyridin-3-yl)pyrimidine derivative and their electroluminescent properties[J]. Dyes and Pigments, 2020, 177: 108257. |
29 | You Q, Chen Y. Ultrabright, highly heat-stable gold nanoclusters through functional ligands and hydrothermally-induced luminescence enhancement[J]. Journal of Materials Chemistry C, 2018, 6(36): 9703-9712. |
30 | Khan I M, Niazi S, Yu Y, et al. Aptamer induced multicolored AuNCs-WS2 “turn on” FRET nano platform for dual-color simultaneous detection of aflatoxinB1 and zearalenone[J]. Analytical Chemistry, 2019, 91(21): 14085-14092. |
31 | Lin J H, Chen S J, Lee J E, et al. The detection of mercury(Ⅱ) ions using fluorescent gold nanoclusters on a portable paper-based device[J]. Chemical Engineering Journal, 2022, 430(4): 133070. |
32 | Roberts P, Perry J K, Gupta R K, et al. Confinement-enhanced luminescence in protein-gold nanoclusters[J]. The Journal of Physical Chemistry Letters, 2020, 11(23): 10278-10282. |
33 | Deng H H, Huang K Y, Xiu L F, et al. Bis-schiff base linkage-triggered highly bright luminescence of gold nanoclusters in aqueous solution at the single-cluster level[J]. Nature Communications, 2022, 13: 3381. |
34 | Huang H Y, Ca K B, Io C C, et al. Electronically coupled gold nanoclusters render deep-red emission with high quantum yields[J]. The Journal of Physical Chemistry Letters, 2020, 11(21): 9344-9350. |
35 | Wang Z P, Zhu Z L, Zhao C K, et al. Silver doping-induced luminescence enhancement and red-shift of gold nanoclusters with aggregation-induced emission[J]. Chemistry-An Asian Journal, 2019, 14(6): 765-769. |
36 | Bai X L, Xu S Y, Wang L Y. Full-range pH stable Au-clusters in nanogel for confinement-enhanced emission and improved sulfide sensing in living cells[J]. Analytical Chemistry, 2018, 90(5): 3270-3275. |
37 | Pramanik G, Kvakova K, Thottappali M A, et al. Inverse heavy-atom effect in near infrared photoluminescent gold nanoclusters[J]. Nanoscale, 2021, 13(23): 10462-10467. |
38 | Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles[J]. Chemical Reviews, 2017, 117(12): 8208-8271. |
39 | Chen Y, Montana D M, Wei H, et al. Shortwave infrared in vivo imaging with gold nanoclusters[J]. Nano Letters, 2017, 17(10): 6330-6334. |
40 | Jin R C, Zeng C J, Zhou M, et al. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities[J]. Chemical Reviews, 2016, 116(18): 10346-10413. |
41 | Bigioni T P, Whetten R L, Dag Ö. Near-infrared luminescence from small gold nanocrystals[J]. The Journal of Physical Chemistry B, 2000, 104(30): 6983-6986. |
42 | Fernando A, Weerawardene K L D M, Karimova N V, et al. Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters[J]. Chemical Reviews, 2015, 115(12): 6112-6216. |
43 | Negishi Y C, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited: bridging the gap between gold(Ⅰ)-thiolate complexes and thiolate-protected gold nanocrystals[J]. Journal of the American Chemical Society, 2005, 127(14): 5261-5270. |
44 | Pramanik G, Humpolickova J, Valenta J, et al. Gold nanoclusters with bright near-infrared photoluminescence[J]. Nanoscale, 2018, 10: 3792-3798. |
45 | Pyo K, Thanthirige V D, Kwak K, et al. Ultrabright luminescence from gold nanoclusters: rigidifying the Au(Ⅰ)-thiolate shell[J]. Journal of the American Chemical Society, 2015, 137(25): 8244-8250. |
46 | Wu Z N, Liu H W, Li T T, et al. Contribution of metal defects in the assembly induced emission of Cu nanoclusters[J]. Journal of the American Chemical Society, 2017, 139(12): 4318-4321. |
47 | Luo Z T, Yuan X, Yu Y, et al. From aggregation-induced emission of Au(Ⅰ)-thiolate complexes to ultrabright Au(0)@Au(Ⅰ)-thiolate core-shell nanoclusters[J]. Journal of the American Chemical Society, 2012, 134(40): 16662-16670. |
48 | Aikens C M. Electronic and geometric structure, optical properties, and excited state behavior in atomically precise thiolate-stabilized noble metal nanoclusters[J]. Accounts of Chemical Research, 2018, 51(12): 3065-3073. |
49 | Weerawardene K L D M, Aikens C M. Theoretical insights into the origin of photoluminescence of Au25(SR)18 - nanoparticles[J]. Journal of the American Chemical Society, 2016, 138(35): 11202-11210. |
50 | Li Q, Zhou M, So W Y, et al. A mono-cuboctahedral series of gold nanoclusters: photoluminescence origin, large enhancement, wide tunability and structure-property correlation[J]. Journal of the American Chemical Society, 2019, 141(13): 5314-5325. |
51 | Yang B, Wu H, Zhao L. Photoluminescence enhancement by controllable aggregation and polymerization of octanuclear gold clusters[J]. Chemical Communications, 2021, 57(47): 5770-5773. |
52 | Soldan G, Aljuhani M A, Bootharaju M S, et al. Gold doping of silver nanoclusters: a 26-fold enhancement in the luminescence quantum yield[J]. Angewandte Chemie International Edition, 2016, 55(19): 5749-5753. |
53 | Ito S, Takano S, Tsukuda T. Alkynyl-protected Au22(C ≡≡ CR)18 clusters featuring new interfacial motifs and R-dependent photoluminescence[J]. The Journal of Physical Chemistry Letters, 2019, 10(21): 6892-6896. |
54 | Mohanty J S, Chaudhari K, Sudhakar C, et al. Metal-ion-induced luminescence enhancement in protein protected gold clusters[J]. The Journal of Physical Chemistry C, 2019, 123(47): 28969-28976. |
55 | Chang H, Karan N S, Shin K, et al. Highly fluorescent gold cluster assembly[J]. Journal of the American Chemical Society, 2021, 143(1): 326-334. |
56 | Chandra S, Nonappa, Beaune G, et al. Highly luminescent gold nanocluster frameworks[J]. Advanced Optical Materials, 2019, 7(20): 1900620. |
57 | Li B Z, Wang X, Shen X, et al. Aggregation-induced emission from gold nanoclusters for use as a luminescence-enhanced nanosensor to detect trace amounts of silver ions[J]. Journal of Colloid and Interface Science, 2016, 467: 90-96. |
58 | Liu J X, Feng J, Yu Y, et al. Fabrication of a luminescent supramolecular hydrogel based on the AIE strategy of gold nanoclusters and their application as a luminescence switch[J]. The Journal of Physical Chemistry C, 2020, 124(43): 23844-23851. |
59 | Zhang T, Wang C Y, Ma X. Metal-free room-temperature phosphorescent systems for pure white-light emission and latent fingerprint visualization[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7778-7785. |
60 | Zhang W S, Lin D M, Wang H X, et al. Supramolecular self-assembly bioinspired synthesis of luminescent gold nanocluster-embedded peptide nanofibers for temperature sensing and cellular imaging[J]. Bioconjugate Chemistry, 2017, 28(9): 2224-2229. |
61 | Shen J L, Bi Y, Liu B H, et al. Co-assembly of gold nanocluster with imidazolium surfactant into ordered luminescent fibers based on aggregation induced emission strategy[J]. Journal of Molecular Liquids, 2019, 291: 111275. |
62 | Zhu H G, Goswami N, Yao Q F, et al. Cyclodextrin-gold nanocluster decorated TiO2 enhances photocatalytic decomposition of organic pollutants[J]. Journal of Materials Chemistry A, 2018, 6(3): 1102-1108. |
63 | Halawa M I, Wu F, Fereja T H, et al. One-pot green synthesis of supramolecular β-cyclodextrin functionalized gold nanoclusters and their application for highly selective and sensitive fluorescent detection of dopamine[J]. Sensors and Actuators B: Chemical, 2018, 254: 1017-1024. |
64 | Xiao W X, Yang Z Z, Liu J, et al. Sensitive cholesterol determination by β-cyclodextrin recognition based on fluorescence enhancement of gold nanoclusters[J]. Microchemical Journal, 2022, 175: 107125. |
65 | Li W J, Wang X, Jiang T, et al. One-pot synthesis of β-cyclodextrin modified Au nanoclusters with near-infrared emission[J]. Chemical Communications, 2020, 56(42): 5580-5583. |
66 | Song X R, Zhu W, Ge X G, et al. A new class of NIR-Ⅱ gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging[J]. Angewandte Chemmie International Edition, 2021, 60(3): 1306-1312. |
67 | Liu X W, Hou X Q, Li Z, et al. Water-soluble amino pillar[5]arene functionalized gold nanoclusters as fluorescence probes for the sensitive determination of dopamine[J]. Microchemical Journal, 2019, 150: 104084. |
68 | Wang X, Wu J R, Liang F, et al. In situ gold nanoparticle synthesis mediated by a water-soluble leaning pillar[6]arene for self-assembly, detection, and catalysis[J]. Organic Letters, 2019, 21(13): 5215-5218. |
69 | Tan L L, Wei M Y, Shang L, et al. Cucurbiturils-mediated noble metal nanoparticles for applications in sensing, SERS, theranostics, and catalysis[J]. Advanced Functional Materials, 2021, 31(1): 2007277. |
70 | Nigra M M, Yeh A J, Okrut A, et al. Accessible gold clusters using calix[4]arene N-heterocyclic carbene and phosphine ligands[J]. Dalton Transactions, 2013, 42(35): 12762-12771. |
71 | Chen X, Häkkinen H. Protected but accessible: oxygen activation by a calixarene-stabilized undecagold cluster[J]. Journal of the American Chemical Society, 2013, 135(35): 12944-12947. |
72 | Yang H W, Lu F N, Sun Y, et al. Fluorescent gold nanocluster-based sensor array for nitrophenol isomer discrimination via an integration of host-guest interaction and inner filter effect[J]. Analytical Chemistry, 2018, 90(21): 12846-12853. |
73 | Wang Y Y, Guo H G, Zhang Y X, et al. Achieving highly water-soluble and luminescent gold nanoclusters modified by β-cyclodextrin as multifunctional nanoprobe for biological applications[J]. Dyes and Pigments, 2018, 157: 359-368. |
74 | Ding S N, Li C M, Bao N. Off-on phosphorescence assay of heparin via gold nanoclusters modulated with protamine[J]. Biosensors and Bioelectronics, 2015, 64: 333-337. |
75 | Huang K Y, Fang Q H, Sun W M, et al. Cucurbit[n]uril supramolecular assemblies-regulated charge transfer for luminescence switching of gold nanoclusters[J]. The Journal of Physical Chemistry Letters, 2022, 13(1): 419-426. |
76 | Sugiuchi M, Maeba J, Okubo N, et al. Aggregation-induced fluorescence-to-phosphorescence switching of molecular gold clusters[J]. Journal of the American Chemical Society, 2017, 139(49): 17731-17734. |
77 | Wang X, Xu Y, Ma X, et al. Multicolor photoluminescence of a hybrid film via the dual-emitting strategy of an inorganic fluorescent Au nanocluster and an organic room-temperature phosphorescent copolymer[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 2866-2872. |
78 | Jiang T, Wang X, Wang J, et al. Humidity- and temperature-tunable multicolor luminescence of cucurbit[8]uril-based supramolecular assembly[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14399-14407. |
79 | Tian R, Zhang S T, Li M W, et al. Localization of Au nanoclusters on layered double hydroxides nanosheets: confinement-induced emission enhancement and temperature-responsive luminescence[J]. Advanced Functional Materials, 2015, 25(31): 5006-5015. |
80 | Deng H H, Shi X Q, Wang F F, et al. Fabrication of water-soluble, green-emitting gold nanoclusters with a 65% photoluminescence quantum yield via host-guest recognition[J]. Chemistry of Materials, 2017, 29(3): 1362-1369. |
81 | Zhu H S, Li J, Wang J, et al. Lighting up the gold nanoclusters via host-guest recognition for high-efficiency antibacterial performance and imaging[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36831-36838. |
82 | Jiang T, Qu G J, Wang J, et al. Cucurbiturils brighten Au nanoclusters in water[J]. Chemical Science, 2020, 11(13): 3531-3537. |
83 | Qu G J, Jiang T, Liu T, et al. Multifunctional host polymers assist Au nanoclusters achieve high quantum yield and mitochondrial imaging[J]. ACS Applied Materials & Interfaces, 2022, 14(1): 2023-2028. |
84 | Goswami N, Lin F X, Liu Y B, et al. Highly luminescent thiolated gold nanoclusters impregnated in nanogel[J]. Chemistry of Materials, 2016, 28(11): 4009-4016. |
85 | Qu G J, Jiang T, Li W J, et al. Emission enhancement and self-healing of a hybrid hydrogel employing Au nanoclusters as cross-linkers[J]. Dyes and Pigments, 2021, 188: 109211. |
86 | Han X S, Luan X Q, Su H F, et al. Structure determination of alkynyl-protected gold nanocluster Au22(tBuC≡≡ C)18 and its thermochromic luminescence[J]. Angewandte Chemie International Edition, 2020, 59(6): 2309-2312. |
87 | Chevrier D M, Thanthirige V D, Luo Z, et al. Structure and formation of highly luminescent protein-stabilized gold clusters[J]. Chemical Science, 2018, 9(10): 2782-2790. |
88 | Wu L L, Fang W H, Chen X B. The Photoluminescence mechanism of ultra-small gold clusters[J]. Physical Chemistry Chemical Physics, 2016, 18(26): 17320-17325. |
89 | Peng Y W, Cao L, Pidamaimaiti G, et al. Facile construction of highly luminescent and biocompatible gold nanoclusters by shell rigidification for two-photon pH-edited cytoplasmic and in vivo imaging[J]. Nanoscale, 2022, 14(23): 8342-8348. |
90 | Weerawardene K L D M, Aikens C M. Origin of photoluminescence of Ag25(SR)18-nanoparticles: ligand and doping effect[J]. The Journal of Physical Chemistry C, 2018, 122(4): 2440-2447. |
91 | Wang X Y, Zhang J, Yin J, et al. More is better: aggregation induced luminescence and exceptional chirality and circularly polarized luminescence of chiral gold clusters[J]. Materials Chemistry Frontiers, 2021, 5(1): 368-374. |
92 | Santiago-González B, Vázquez-Vázquez C, Blanco-Varela M C, et al. Synthesis of water-soluble gold clusters in nanosomes displaying robust photoluminescence with very large stokes shift[J]. Journal of Colloid and Interface Science, 2015, 455: 154-162. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[3] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[4] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[5] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[6] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[7] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[8] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[9] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[10] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[11] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[12] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[13] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[14] | 黄心童, 耿宇昊, 刘恒源, 陈卓, 徐建鸿. 微流控制备新型功能纳米粒子研究进展[J]. 化工学报, 2023, 74(1): 355-364. |
[15] | 鞠小兵, 李雪纯, 孙芳. 二硫代水杨酸衍生物对光固化材料性能的影响[J]. 化工学报, 2022, 73(9): 4187-4193. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 211
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 344
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||