化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2458-2467.DOI: 10.11949/0438-1157.20230323
李勇1(), 高佳琦1, 杜超1, 赵亚丽1(), 李伯琼1, 申倩倩2, 贾虎生2, 薛晋波2()
收稿日期:
2023-04-04
修回日期:
2023-06-10
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
赵亚丽,薛晋波
作者简介:
李勇(1987—),男,博士,讲师,lytyut@126.com
基金资助:
Yong LI1(), Jiaqi GAO1, Chao DU1, Yali ZHAO1(), Boqiong LI1, Qianqian SHEN2, Husheng JIA2, Jinbo XUE2()
Received:
2023-04-04
Revised:
2023-06-10
Online:
2023-06-05
Published:
2023-07-27
Contact:
Yali ZHAO, Jinbo XUE
摘要:
合理设计具有出色光吸收和电荷分离与转移能力的纳米催化剂,实现高效的光催化制氢仍然是一个挑战。借助间苯二酚-甲醛树脂(RF)模板和Ar气氛煅烧工艺构建了三元Ni@C@TiO2核壳双重异质结纳米催化剂,实现了高效热积聚和高通量电荷转移。该体系充分结合了碳层的宽带吸收、Ni纳米粒子(NPs)的等离激元特性以及TiO2的保护和催化功能。在双重异质结中建立了较大的内部电场,使电荷分离效率提高了2.4倍。得益于Ni@C芯光热效应与Ni/C-C/TiO2双重异质结的协同效应,从而实现有效的电荷分离和传输,提高了电荷转移速率;核壳结构的构建降低了体系热量损耗,最终实现高效的太阳能光热转换(光热效率78.0%)和光热催化分解水产氢性能(析氢速率为1538 μmol·g-1·h-1)的提升。稳健的核壳纳米颗粒可以应用到其他光热催化系统的设计中,为开发更高效的全光谱利用型光催化剂提供思路。
中图分类号:
李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467.
Yong LI, Jiaqi GAO, Chao DU, Yali ZHAO, Boqiong LI, Qianqian SHEN, Husheng JIA, Jinbo XUE. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation[J]. CIESC Journal, 2023, 74(6): 2458-2467.
图3 Ni NPs、 Ni@RF和Ni@C@TiO2的SEM图;Ni@RF@TiO2和Ni@C@TiO2的TEM图;Ni@C@TiO2的STEM图及对应的EDX图
Fig.3 SEM images of Ni NPs, Ni@RF and Ni@C@TiO2; TEM images of Ni@RF@TiO2 and Ni@C@TiO2;STEM images and EDX elemental mappings of Ni@C@TiO2
图4 在模拟太阳光AM 1.5G(100 mW·cm-2)照射下样品的光催化和光热催化产氢性能
Fig.4 Photocatalytic and photo-thermal catalytic hydrogen production performances of samples under AM 1.5G simulated sunlight (100 mW·cm-2)
催化剂 | PC/ (μmol·g-1·h-1) | PTC/ (μmol·g-1·h-1) | PTC/PC比值 |
---|---|---|---|
C@TiO2 | 428 | 653 | 1.5 |
Ni@TiO2 | 604 | 1025 | 1.7 |
Ni@C@TiO2 | 849 | 1538 | 1.8 |
表1 不同NPs样品在不同反应条件下的催化活性
Table 1 Catalytic activities in different reaction conditions over different samples
催化剂 | PC/ (μmol·g-1·h-1) | PTC/ (μmol·g-1·h-1) | PTC/PC比值 |
---|---|---|---|
C@TiO2 | 428 | 653 | 1.5 |
Ni@TiO2 | 604 | 1025 | 1.7 |
Ni@C@TiO2 | 849 | 1538 | 1.8 |
催化剂 | 助催化剂 | 牺牲剂 | 光源 | 产氢活性/(μmol·g-1·h-1) | 文献 |
---|---|---|---|---|---|
Ni@C@TiO2 | — | 三乙醇胺 | 300 W氙灯,AM 1.5G | 1538 | 本工作 |
C@TiO2/TiO2-x | — | 三乙醇胺 | 300 W氙灯,AM 1.5G | 3667 | [ |
BFBA‐TiO2 | — | 三乙醇胺 | 300 W氙灯 | 228.2 (λ>420 nm) | [ |
B-TiO2/g-C3N4 | — | 三乙醇胺 | 300 W氙灯 | 808.97 | [ |
C@TiO2-x /CNNS | 3%(质量) Pt | 三乙醇胺 | 300 W氙灯 | 1830.93 | [ |
Cu-TiO2@C | — | 甲醇 | 300 W氙灯 | 269.1 | [ |
Cr2O3/C@TiO2 | — | 甲醇 | 300 W氙灯 | 446 | [ |
VTi@CQDs@rGO | — | 甲醇 | — | 638 | [ |
Li-EDA处理P-25 | — | 甲醇 | 模拟全光谱 | 3460 | [ |
b-C-N-S-TiO2 | — | 甲醇 | 300 W氙灯,AM 1.5G | 149.7 | [ |
Pt负载金红石H-TiO2 | 0.57%(质量) Pt | 甲醇 | 300 W氙灯 | 3320 | [ |
表2 C/TiO2基催化剂的光解水产氢性能对比
Table 2 Hydrogen evolution of C/TiO2 based photocatalysts
催化剂 | 助催化剂 | 牺牲剂 | 光源 | 产氢活性/(μmol·g-1·h-1) | 文献 |
---|---|---|---|---|---|
Ni@C@TiO2 | — | 三乙醇胺 | 300 W氙灯,AM 1.5G | 1538 | 本工作 |
C@TiO2/TiO2-x | — | 三乙醇胺 | 300 W氙灯,AM 1.5G | 3667 | [ |
BFBA‐TiO2 | — | 三乙醇胺 | 300 W氙灯 | 228.2 (λ>420 nm) | [ |
B-TiO2/g-C3N4 | — | 三乙醇胺 | 300 W氙灯 | 808.97 | [ |
C@TiO2-x /CNNS | 3%(质量) Pt | 三乙醇胺 | 300 W氙灯 | 1830.93 | [ |
Cu-TiO2@C | — | 甲醇 | 300 W氙灯 | 269.1 | [ |
Cr2O3/C@TiO2 | — | 甲醇 | 300 W氙灯 | 446 | [ |
VTi@CQDs@rGO | — | 甲醇 | — | 638 | [ |
Li-EDA处理P-25 | — | 甲醇 | 模拟全光谱 | 3460 | [ |
b-C-N-S-TiO2 | — | 甲醇 | 300 W氙灯,AM 1.5G | 149.7 | [ |
Pt负载金红石H-TiO2 | 0.57%(质量) Pt | 甲醇 | 300 W氙灯 | 3320 | [ |
样品 | ΔTmax/℃ | 时间常数τs/s | 光热转换效率η/% |
---|---|---|---|
Ni@TiO2 | 19.1 | 266.42 | 58.1 |
C@TiO2 | 15.3 | 332.92 | 36.6 |
Ni@C@TiO2 | 24.5 | 257.70 | 78.0 |
表3 样品的光热特性
Table 3 Photo-thermal properties of the as-prepared samples
样品 | ΔTmax/℃ | 时间常数τs/s | 光热转换效率η/% |
---|---|---|---|
Ni@TiO2 | 19.1 | 266.42 | 58.1 |
C@TiO2 | 15.3 | 332.92 | 36.6 |
Ni@C@TiO2 | 24.5 | 257.70 | 78.0 |
1 | Yuan Y G, Zhou L N, Robatjazi H, et al. Earth-abundant photocatalyst for H2 generation from NH3 with light-emitting diode illumination[J]. Science, 2022, 378(6622): 889-893. |
2 | Han H X, Tian L J, Liu D F, et al. Reversing electron transfer chain for light-driven hydrogen production in biotic-abiotic hybrid systems[J]. Journal of the American Chemical Society, 2022, 144(14): 6434-6441. |
3 | Zhou C Y, Wu J C, Li Y Z, et al. Highly efficient UV-visible-infrared light-driven photothermocatalytic steam biomass reforming to H2 on Ni nanoparticles loaded on mesoporous silica[J]. Energy & Environmental Science, 2022, 15(7): 3041-3050. |
4 | 王沛, 魏荣阔. 光热驱动多孔氧化铈热化学循环解水制氢非热质平衡模型[J]. 化工学报, 2022, 73(7): 2885-2894. |
Wang P, Wei R K. Thermal-mass nonequilibrium model for water splitting hydrogen production by solar thermochemical cycle of porous cerium oxide[J]. CIESC Journal, 2022, 73(7): 2885-2894. | |
5 | Li Y G, Bai X H, Yuan D C, et al. General heterostructure strategy of photothermal materials for scalable solar-heating hydrogen production without the consumption of artificial energy[J]. Nature Communications, 2022, 13(1): 776. |
6 | Lu J L, Shi Y X, Chen Z Z, et al. Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen[J]. Chemical Engineering Journal, 2023, 453: 139834. |
7 | Mao C L, Li H, Gu H G, et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light[J]. Chem, 2019, 5(10): 2702-2717. |
8 | Li X L, Li N, Gao Y Q, et al. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction[J]. Chinese Journal of Catalysis, 2022, 43(3): 679-707. |
9 | Wei Y Z, You F F, Zhao D C, et al. Heterogeneous hollow multi-shelled structures with amorphous-crystalline outer-shells for sequential photoreduction of CO2 [J]. Angewandte Chemie International Edition, 2022, 61(49): e202212049. |
10 | Wang J Y, Yang M, Wang D. Progress and perspectives of hollow multishelled structures[J]. Chinese Journal of Chemistry, 2022, 40(10): 1190-1203. |
11 | Xu J Q, Ju Z Y, Zhang W, et al. Efficient infrared-light-driven CO2 reduction over ultrathin metallic Ni-doped CoS2 nanosheets[J]. Angewandte Chemie International Edition, 2021, 60(16): 8705-8709. |
12 | He L, Zhang W Y, Zhao K, et al. Core-shell Cu@Cu2O nanoparticles embedded in 3D honeycomb-like N-doped graphitic carbon for photocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2022, 10(9): 4758-4769. |
13 | Yu H B, Huang J H, Jiang L B, et al. In situ construction of Sn-doped structurally compatible heterojunction with enhanced interfacial electric field for photocatalytic pollutants removal and CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 298: 120618. |
14 | Xia B Q, He B W, Zhang J J, et al. TiO2/FePS3 S-scheme heterojunction for greatly raised photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2022, 12(46): 2201449. |
15 | 徐振和, 李泓江, 高雨, 等. In2O3/Ag∶ZnIn2S4 “Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
Xu Z H, Li H J, Gao Y, et al. Preparation of In2O3/Ag∶ZnIn2S4 “Type Ⅱ” heterogeneous structure materials for visible light catalysis[J]. CIESC Journal, 2022, 73(8): 3625-3635. | |
16 | Li H M, Shen Q Q, Zhang H, et al. Oxygen vacancy-mediated WO3 phase junction to steering photogenerated charge separation for enhanced water splitting[J]. Journal of Advanced Ceramics, 2022, 11(12): 1873-1888. |
17 | Shen Q Q, Xue J B, Li Y, et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation[J]. Applied Catalysis B: Environmental, 2021, 282: 119552. |
18 | Jing J F, Yang J, Li W L, et al. Construction of interfacial electric field via dual-porphyrin heterostructure boosting photocatalytic hydrogen evolution[J]. Advanced Materials, 2022, 34(3): 2106807. |
19 | Li Y, Shen Q Q, Guan R F, et al. A C@TiO2 yolk-shell heterostructure for synchronous photothermal-photocatalytic degradation of organic pollutants[J]. Journal of Materials Chemistry C, 2020, 8(3): 1025-1040. |
20 | Li Y, Xue J B, Shen Q Q, et al. Construction of a ternary spatial junction in yolk-shell nanoreactor for efficient photo-thermal catalytic hydrogen generation[J]. Chemical Engineering Journal, 2021, 423: 130188. |
21 | Li Y, Chang H, Wang Z F, et al. A 3D C@TiO2 multishell nanoframe for simultaneous photothermal catalytic hydrogen generation and organic pollutant degradation[J]. Journal of Colloid and Interface Science, 2022, 609: 535-546. |
22 | Ding D W, Liu K, Fan Q K, et al. Nickel nanoparticles individually encapsulated in densified ceramic shells for thermally stable solar energy absorption[J]. Journal of Materials Chemistry A, 2019, 7(7): 3039-3045. |
23 | Yang F, Chen J X, Ye Z Y, et al. Ni-based plasmonic/magnetic nanostructures as efficient light absorbers for steam generation[J]. Advanced Functional Materials, 2021, 31(7): 2006294. |
24 | Liu H Y, Joo J B, Dahl M, et al. Crystallinity control of TiO2 hollow shells through resin-protected calcination for enhanced photocatalytic activity[J]. Energy & Environmental Science, 2015, 8(1): 286-296. |
25 | Chen S B, Liao J H, Zhou Z N, et al. Boosting photocatalytic hydrogen evolution using a noble-metal-free co-catalyst: CuNi@C with oxygen-containing functional groups[J]. Applied Catalysis B: Environmental, 2021, 291: 120139. |
26 | Gao D D, Liu W J, Xu Y, et al. Core-shell Ag@Ni cocatalyst on the TiO2 photocatalyst: one-step photoinduced deposition and its improved H2-evolution activity[J]. Applied Catalysis B: Environmental, 2020, 260: 118190. |
27 | Chen B, Wang X P, Dong W B, et al. Enhanced light-driven hydrogen-production activity induced by accelerated interfacial charge transfer in donor-acceptor conjugated polymers/TiO2 hybrid[J]. Chemistry-A European Journal, 2019, 25(13): 3362-3368. |
28 | Pan J Q, Dong Z J, Wang B B, et al. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction[J]. Applied Catalysis B: Environmental, 2019, 242: 92-99. |
29 | Liu C, Wu P C, Wu J N, et al. Effective protect of oxygen vacancies in carbon layer coated black TiO2- x /CNNS hetero-junction photocatalyst[J]. Chemical Engineering Journal, 2019, 359: 58-68. |
30 | Chen S B, Li X, Zhou W Y, et al. Carbon-coated Cu-TiO2 nanocomposite with enhanced photostability and photocatalytic activity[J]. Applied Surface Science, 2019, 466: 254-261. |
31 | Chen Y, Mao G B, Tang Y W, et al. Synthesis of core-shell nanostructured Cr2O3/C@TiO2 for photocatalytic hydrogen production[J]. Chinese Journal of Catalysis, 2021, 42(1): 225-234. |
32 | Lu Y, Liu X L, He L, et al. Spatial heterojunction in nanostructured TiO2 and its cascade effect for efficient photocatalysis[J]. Nano Letters, 2020, 20(5): 3122-3129. |
33 | Zhang K, Wang L Y, Kim J K, et al. An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation[J]. Energy & Environmental Science, 2016, 9(2): 499-503. |
34 | Yan X, Xing Z P, Cao Y, et al. In-situ C-N-S-tridoped single crystal black TiO2 nanosheets with exposed {001} facets as efficient visible-light-driven photocatalysts[J]. Applied Catalysis B: Environmental, 2017, 219: 572-579. |
35 | Xu Y F, Zhang C, Zhang L X, et al. Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance[J]. Energy & Environmental Science, 2016, 9(7): 2410-2417. |
36 | Ming J T, Liu A, Zhao J W, et al. Hot π‐electron tunneling of metal-insulator-COF nanostructures for efficient hydrogen production[J]. Angewandte Chemie International Edition, 2019, 58(50): 18290-18294. |
37 | Chen L W, Hao Y C, Guo Y, et al. Metal-organic framework membranes encapsulating gold nanoparticles for direct plasmonic photocatalytic nitrogen fixation[J]. Journal of the American Chemical Society, 2021, 143(15): 5727-5736. |
38 | Sun M Q, Fu X Q, Chen K X, et al. Dual-plasmonic gold@copper sulfide core-shell nanoparticles: phase-selective synthesis and multimodal photothermal and photocatalytic behaviors[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46146-46161. |
39 | Kanata-Kito T, Matsunaga M, Takakura H, et al. Photoreflectance characterization of built-in potential in MBE-produced as-grown GaAs surface[C]// Advances in semiconductors and superconductors: physics toward devices applications. San Diego, CA, 1990: 56-65. |
40 | Formal F L, Sivula K, Grätzel M. The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments[J]. The Journal of Physical Chemistry C, 2012, 116(51): 26707-26720. |
41 | Chen X J, Wang J, Chai Y Q, et al. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction[J]. Advanced Materials, 2021, 33(7): 2007479. |
42 | Li B S, Liu S Y, Lai C, et al. Unravelling the interfacial charge migration pathway at atomic level in 2D/2D interfacial Schottky heterojunction for visible-light-driven molecular oxygen activation[J]. Applied Catalysis B: Environmental, 2020, 266: 118650. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[6] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[7] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[8] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[9] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[10] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[11] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[12] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[13] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[14] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||||||||||||||||||
全文 297
|
|
|||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||