化工学报 ›› 2021, Vol. 72 ›› Issue (2): 1116-1124.DOI: 10.11949/0438-1157.20201333
朱新宇1,3(),张光义2,3(),张建伟1,温宏炎3,李运甲3,张建岭3,许光文1,3
收稿日期:
2020-09-18
修回日期:
2020-10-30
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
张光义
作者简介:
朱新宇(1995—),男,硕士研究生,基金资助:
ZHU Xinyu1,3(),ZHANG Guangyi2,3(),ZHANG Jianwei1,WEN Hongyan3,LI Yunjia3,ZHANG Jianling3,XU Guangwen1,3
Received:
2020-09-18
Revised:
2020-10-30
Online:
2021-02-05
Published:
2021-02-05
Contact:
ZHANG Guangyi
摘要:
采用热重分析法研究了不同升温速率下醇提中药渣、废弃活性焦及其不同比例混合物的燃烧特性,并利用Coats-Redfern方法计算其燃烧动力学参数。结果表明,醇提中药渣燃烧是挥发分和少量固定碳连续燃烧过程,而废弃活性焦燃烧主要是固定碳燃烧的过程;醇提中药渣比废弃活性焦具有更好的燃烧特性和更低的活化能。采用TG-MS联用分析仪对比研究醇提中药渣及其混合物的燃烧过程产生的烟气。结果表明,废弃活性焦的加入对醇提中药渣燃烧过程中产生的NOx有明显的吸附还原作用。动力学分析表明,与废焦相比,混合物反应活化能随着中药渣比例的增加而变小,表明添加中药渣能提高废焦的反应活性,促进其燃烧。利用热重分析预测混合燃料的燃烧性质可靠,对醇提中药渣与废弃活性焦共燃处理的技术开发具有指导作用。
中图分类号:
朱新宇, 张光义, 张建伟, 温宏炎, 李运甲, 张建岭, 许光文. 醇提中药渣与废弃活性焦共燃特性及动力学分析[J]. 化工学报, 2021, 72(2): 1116-1124.
ZHU Xinyu, ZHANG Guangyi, ZHANG Jianwei, WEN Hongyan, LI Yunjia, ZHANG Jianling, XU Guangwen. Performances and kinetics analyses of co-combustion of alcohol extracted herb residue and wasted activated coke[J]. CIESC Journal, 2021, 72(2): 1116-1124.
图1 醇提中药渣颗粒燃烧后灰渣剖面图和热解后半焦表观图
Fig.1 The profile of ash from combustion and semi-coke apparent diagram after pyrolysis of alcohol extracted herb residues particles
Sample | Proximate analysis/% (mass) | Ultimate analysis/% (mass) | HHVs/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Moisture | Ash | VM | FC | C | H | N | S | O | ||
HR | 4.7 | 14.2 | 68.5 | 12.6 | 40.6 | 5.1 | 3.4 | 1.5 | 35.1 | 15.9 |
WC | 4.1 | 14.1 | 15.2 | 66.6 | 65.4 | 1.1 | 2.8 | 2.2 | 10.3 | 24.5 |
表1 中药渣和废焦的工业分析和元素分析
Table 1 Proximate and ultimate analyses of the herb residue and waste coke
Sample | Proximate analysis/% (mass) | Ultimate analysis/% (mass) | HHVs/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Moisture | Ash | VM | FC | C | H | N | S | O | ||
HR | 4.7 | 14.2 | 68.5 | 12.6 | 40.6 | 5.1 | 3.4 | 1.5 | 35.1 | 15.9 |
WC | 4.1 | 14.1 | 15.2 | 66.6 | 65.4 | 1.1 | 2.8 | 2.2 | 10.3 | 24.5 |
Sample | Component content/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
SO3 | K2O | P2O5 | CaO | MgO | SiO2 | Al2O3 | Na2O | Fe2O3 | |
HR | 29.0 | 28.8 | 15.8 | 14.8 | 6.1 | 2.0 | 1.1 | 0.9 | 0.6 |
WC | 20.8 | 0.6 | 0.5 | 13.9 | 1.0 | 35.3 | 18.9 | 0.8 | 6.6 |
表2 中药渣灰和废焦灰的XRF 分析
Table 2 XRF analysis of the herb residue ash and the waste coke ash
Sample | Component content/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
SO3 | K2O | P2O5 | CaO | MgO | SiO2 | Al2O3 | Na2O | Fe2O3 | |
HR | 29.0 | 28.8 | 15.8 | 14.8 | 6.1 | 2.0 | 1.1 | 0.9 | 0.6 |
WC | 20.8 | 0.6 | 0.5 | 13.9 | 1.0 | 35.3 | 18.9 | 0.8 | 6.6 |
Sample | β/(℃/min) | Ti/℃ | Tmax/℃ | Th/℃ | Kr×105/(min/℃2) | Cb×104/min-1 | S×10-8/( min-2·℃-3) |
---|---|---|---|---|---|---|---|
HR | 10 | 205 | 451 | 559 | 15.44 | 18.22 | 44.23 |
20 | 208 | 293 | 586 | 17.50 | 34.59 | 89.98 | |
40 | 216 | 305 | 655 | 33.91 | 54.94 | 254.78 | |
25WC75HR | 10 | 302 | 462 | 568 | 4.32 | 24.55 | 11.77 |
20 | 332 | 468 | 615 | 6.72 | 57.02 | 30.60 | |
40 | 221 | 302 | 688 | 30.05 | 95.07 | 216.06 | |
50WC50HR | 10 | 332 | 456 | 548 | 6.58 | 30.22 | 17.89 |
20 | 340 | 460 | 606 | 7.77 | 58.53 | 36.64 | |
40 | 356 | 532 | 706 | 8.24 | 90.77 | 55.98 | |
75WC25HR | 10 | 380 | 460 | 612 | 5.39 | 21.91 | 12.52 |
20 | 400 | 465 | 613 | 5.69 | 48.48 | 26.24 | |
40 | 412 | 540 | 739 | 6.45 | 76.86 | 40.46 | |
WC | 10 | 440 | 485 | 620 | 4.47 | 16.71 | 10.01 |
20 | 448 | 500 | 630 | 5.03 | 30.11 | 21.94 | |
40 | 450 | 575 | 779 | 5.44 | 34.27 | 30.04 |
表3 混合样品的燃烧特性参数
Table 3 Combustion characteristic parameters of various blended samples
Sample | β/(℃/min) | Ti/℃ | Tmax/℃ | Th/℃ | Kr×105/(min/℃2) | Cb×104/min-1 | S×10-8/( min-2·℃-3) |
---|---|---|---|---|---|---|---|
HR | 10 | 205 | 451 | 559 | 15.44 | 18.22 | 44.23 |
20 | 208 | 293 | 586 | 17.50 | 34.59 | 89.98 | |
40 | 216 | 305 | 655 | 33.91 | 54.94 | 254.78 | |
25WC75HR | 10 | 302 | 462 | 568 | 4.32 | 24.55 | 11.77 |
20 | 332 | 468 | 615 | 6.72 | 57.02 | 30.60 | |
40 | 221 | 302 | 688 | 30.05 | 95.07 | 216.06 | |
50WC50HR | 10 | 332 | 456 | 548 | 6.58 | 30.22 | 17.89 |
20 | 340 | 460 | 606 | 7.77 | 58.53 | 36.64 | |
40 | 356 | 532 | 706 | 8.24 | 90.77 | 55.98 | |
75WC25HR | 10 | 380 | 460 | 612 | 5.39 | 21.91 | 12.52 |
20 | 400 | 465 | 613 | 5.69 | 48.48 | 26.24 | |
40 | 412 | 540 | 739 | 6.45 | 76.86 | 40.46 | |
WC | 10 | 440 | 485 | 620 | 4.47 | 16.71 | 10.01 |
20 | 448 | 500 | 630 | 5.03 | 30.11 | 21.94 | |
40 | 450 | 575 | 779 | 5.44 | 34.27 | 30.04 |
Sample | T | Heating rate/(℃/min) | E/(kJ/mol) | y=ax+b | k0/min-1 | R2 | n |
---|---|---|---|---|---|---|---|
HR | 205—315 210—320 215—330 | 10 20 40 | 23.88 22.92 22.57 | y=-2872.03x-8.43 y=-2757.10x-8.62 y=-2714.65x-8.94 | 6.27 9.95 14.23 | 0.997 0.990 0.988 | 1.0 1.0 1.0 |
25WC75HR | 215—315 | 10 | 34.83 | y=-4188.83x-6.62 | 55.86 | 0.999 | 1.0 |
215—320 220—330 | 20 40 | 30.40 29.90 | y=-3656.73x-7.80 y=-3596.33x-7.95 | 29.96 50.73 | 0963 0.967 | 1.0 1.0 | |
50WC50HR | 225—315 225—320 230—330 | 10 20 40 | 33.29 29.45 28.94 | y=-4003.88x-7.43 y=-3542.33x-8.23 y=-3481.03x-8.46 | 23.75 18.88 29.49 | 0.994 0..987 0.984 | 1.2 1.2 1.2 |
75WC25HR | 240—315 245—320 255—350 | 10 20 40 | 20.68 17.94 15.98 | y=-2487.93x-10.58 y=-2157.87x-11.03 y=-1921.88x-11.59 | 0.63 0.70 0.71 | 0.992 0.993 0.982 | 1.0 1.0 1.0 |
HR | 445—560 | 10 | 47.71 | y=-5737.92 x-5.33 | 289.87 | 0.969 | 1.4 |
465—585 515—650 | 20 40 | 34.67 25.50 | y=-4170.55x-7.59 y=-3067.40x-9.24 | 42.16 11.91 | 0.965 0.964 | 1.4 1.4 | |
25WC75HR | 445—560 460—585 495—685 | 10 20 40 | 63.56 50.19 36.31 | y=-7644.73x-3.17 y=-6036.40x-5.59 y=-4367.24x-8.13 | 3211.00 450.95 51.46 | 0.960 0.968 0.972 | 1.4 1.4 1.4 |
50WC50HR | 450—550 440—605 465—700 | 10 20 40 | 70.70 62.53 40.31 | y=-8503.19x-2.02 y=-7520.90x-3.79 y=-4848.05x-7.73 | 11280.66 3398.85 85.22 | 0.961 0.978 0.964 | 1.5 1.5 1.5 |
75WC75HR | 415—610 420—615 440—735 | 10 20 40 | 88.64 70.62 41.77 | y=-10661.76x-0.72 y=-8494.44x-2.80 y=-5023.79x-7.81 | 51895.26 10330.54 81.52 | 0.962 0.980 0.982 | 1.8 1.8 1.8 |
WC | 445—615 455—630 465—780 | 10 20 40 | 142.54 94.06 52.02 | y=-17145.00x+8.75 y=-11313.17x+0.37 y=-6256.52x-6.84 | 1.08·109 327577.38 267.82 | 0.999 0.985 0.991 | 1.5 1.5 1.5 |
表4 样品的燃烧动力学参数
Table 4 Kinetic parameters of samples combustion
Sample | T | Heating rate/(℃/min) | E/(kJ/mol) | y=ax+b | k0/min-1 | R2 | n |
---|---|---|---|---|---|---|---|
HR | 205—315 210—320 215—330 | 10 20 40 | 23.88 22.92 22.57 | y=-2872.03x-8.43 y=-2757.10x-8.62 y=-2714.65x-8.94 | 6.27 9.95 14.23 | 0.997 0.990 0.988 | 1.0 1.0 1.0 |
25WC75HR | 215—315 | 10 | 34.83 | y=-4188.83x-6.62 | 55.86 | 0.999 | 1.0 |
215—320 220—330 | 20 40 | 30.40 29.90 | y=-3656.73x-7.80 y=-3596.33x-7.95 | 29.96 50.73 | 0963 0.967 | 1.0 1.0 | |
50WC50HR | 225—315 225—320 230—330 | 10 20 40 | 33.29 29.45 28.94 | y=-4003.88x-7.43 y=-3542.33x-8.23 y=-3481.03x-8.46 | 23.75 18.88 29.49 | 0.994 0..987 0.984 | 1.2 1.2 1.2 |
75WC25HR | 240—315 245—320 255—350 | 10 20 40 | 20.68 17.94 15.98 | y=-2487.93x-10.58 y=-2157.87x-11.03 y=-1921.88x-11.59 | 0.63 0.70 0.71 | 0.992 0.993 0.982 | 1.0 1.0 1.0 |
HR | 445—560 | 10 | 47.71 | y=-5737.92 x-5.33 | 289.87 | 0.969 | 1.4 |
465—585 515—650 | 20 40 | 34.67 25.50 | y=-4170.55x-7.59 y=-3067.40x-9.24 | 42.16 11.91 | 0.965 0.964 | 1.4 1.4 | |
25WC75HR | 445—560 460—585 495—685 | 10 20 40 | 63.56 50.19 36.31 | y=-7644.73x-3.17 y=-6036.40x-5.59 y=-4367.24x-8.13 | 3211.00 450.95 51.46 | 0.960 0.968 0.972 | 1.4 1.4 1.4 |
50WC50HR | 450—550 440—605 465—700 | 10 20 40 | 70.70 62.53 40.31 | y=-8503.19x-2.02 y=-7520.90x-3.79 y=-4848.05x-7.73 | 11280.66 3398.85 85.22 | 0.961 0.978 0.964 | 1.5 1.5 1.5 |
75WC75HR | 415—610 420—615 440—735 | 10 20 40 | 88.64 70.62 41.77 | y=-10661.76x-0.72 y=-8494.44x-2.80 y=-5023.79x-7.81 | 51895.26 10330.54 81.52 | 0.962 0.980 0.982 | 1.8 1.8 1.8 |
WC | 445—615 455—630 465—780 | 10 20 40 | 142.54 94.06 52.02 | y=-17145.00x+8.75 y=-11313.17x+0.37 y=-6256.52x-6.84 | 1.08·109 327577.38 267.82 | 0.999 0.985 0.991 | 1.5 1.5 1.5 |
1 | Jin Z Q, Hou Q W, Niu T Z. Effect of cultivating Pleurotus ostreatus on substrates supplemented with herb residues on yield characteristics, substrates degradation, and fruiting bodies' properties[J]. Journal of the Science of Food and Agriculture, 2020, 100(13): 4901-4910. |
2 | 葛亚昕, 张光义, 崔丽杰, 等. 高含水菌渣流化床燃烧NOx、SO2排放特性[J]. 化工学报, 2017, 68(8): 3250-3257. |
Ge Y X, Zhang G Y, Cui L J, et al. Characteristics of NOx and SO2 emission from combustion of antibiotic mycelial residue with high water content in fluidized bed reactor[J]. CIESC Journal, 2017, 68(8): 3250-3257. | |
3 | Li Y T, Lin B, Wang S, et al. Carbon consumption of activated coke in the thermal regeneration process for flue gas desulfurization and denitrification[J]. Journal of Cleaner Production, 2019, 228: 1391-1400. |
4 | 于凤芹, 李运甲, 刘周恩, 等. 移动床活性焦烟气净化工艺中废活性焦的形成与特征分析[J]. 过程工程学报, 2020, 20(6): 695-702. |
Yu F Q, Li Y J, Liu Z E, et al. Formation and characteristics of used activated coke from flue gas purification process by activated coke in moving bed[J]. Journal of Process Engineering, 2020, 20(6): 695-702. | |
5 | Li Y J, Zhang X L, Huang F L, et al. The simultaneous removal of SO2 and NO from flue gas over activated coke in a multi-stage fluidized bed at low temperature[J]. Fuel, 2020, 275: 117862. |
6 | Chansa O, Luo Z Y, Yu C J. Study of the kinetic behaviour of biomass and coal during oxyfuel co-combustion[J]. Chinese Journal of Chemical Engineering, 2020, 28(7): 1796-1804. |
7 | 温宏炎, 张玉明, 纪德馨, 等. 油泥焦与褐煤共燃特性及动力学[J]. 化工学报, 2020, 71(2): 755-765. |
Wen H Y, Zhang Y M, Ji D X, et al. Co-combustion of oil sludge char and brown coal: characteristics and kinetics[J]. CIESC Journal, 2020, 71(2): 755-765. | |
8 | Kuznetsov G V, Syrodoy S V, Kostoreva A A, et al. Effect of concentration and relative position of wood and coal particles on the characteristics of the mixture ignition process[J]. Fuel, 2020, 274: 117843. |
9 | Yang J L, Chen H X, Zhao W T, et al. Combustion kinetics and emission characteristics of peat by using TG-FTIR technique[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(1): 519-528. |
10 | Xu T, Ning X J, Wang G W, et al. Combustion characteristics and kinetic analysis of co-combustion between bag dust and pulverized coal[J]. International Journal of Minerals Metallurgy and Materials, 2018, 25(12): 1412-1422. |
11 | Lu K M, Lee W J, Chen W H, et al. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends[J]. Applied Energy, 2013, 105: 57-65. |
12 | Gong Z, Wu W F, Zhao Z, et al. Combination of catalytic combustion and catalytic denitration on semi-coke with Fe2O3 and CeO2[J]. Catalysis Today, 2018, 318: 59-65. |
13 | Chen Y, Mori S, Pan W. Studying the mechanisms of ignition of coal particles by TG-DTA[J]. Thermochimica Acta, 1996, 275: 149-158. |
14 | 洪晨, 杨强, 王志强, 等. 抗生素菌渣与煤混合燃烧特性及其动力学分析[J]. 化工学报, 2017, 68(1): 360-368. |
Hong C, Yang Q, Wang Z Q, et al. Co-combustion characteristics and kinetic analysis of antibiotic bacterial residue and coal [J]. CIESC Journal, 2017, 68(1): 360-368. | |
15 | 辛善志, 黄芳, 刘晓烨, 等. 烘焙中药渣的热解与燃烧特性及其动力学分析[J]. 化工学报, 2019, 70(8): 3142-3150 |
Xin S Z, Huang F, Liu X Y, et al. Pyrolysis and combustion characteristics and kinetics of torrefied traditional Chinese medicine waste [J]. CIESC Journal, 2019, 70(8): 3142-3150. | |
16 | Álvarez A, Pizarro C, García R, et al. Determination of kinetic parameters for biomass combustion[J]. Bioresource Technology, 2016, 216: 36-43. |
17 | Gao W, Li J, Martí-Rossselló, et al. Experimental study on the ignition characteristics of cellulose, hemicellulose, lignin and their mixtures[J]. Journal of the Energy Institute, 2019, 92(5): 1303-1312. |
18 |
夏紫薇, 郑刘根, 周春财, 等. 安徽临涣矿区烟煤与生活污泥共燃的燃烧特性与动力学特征[J]. 过程工程学报, 2020, DOI: 10.12034/j.issn.1009-606x.219375.
DOI |
Xia Z W, Zheng L G, Zhou C C, et al. Combustion characteristics and kinetic characteristics of co-combustion of bituminous coal and domestic sludge in Linhuan Mining Area, Anhui [J]. Journal of Process Engineering, 2020, DOI: 10.12034/j.issn.1009-606x.219375.
DOI |
|
19 | Huang L, Liu J, He Y, et al. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel[J]. Bioresource Technology, 2016, 218: 631-642. |
20 | Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data [J]. Nature, 1964, 201: 68-69. |
21 | Doyle C D. Estimating isothermal life from thermogravimetric data [J]. Journal of Applied Polymer Science, 1962, 6: 639-642. |
22 | Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Analytical Chemistry, 1957, 29: 1702-1706. |
23 | Flynn J H, Wall L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. Journal of Polymer Science Part B: Polymer Letters, 1966, 4: 323-328. |
24 | Miura K. A new and simple method to estimate f(E) and k0(E) in the distributed activation-energy model from three sets of experimental-data[J]. Energy & Fuels, 1995, 9(2): 302-307. |
25 | Friedman H L. New methods for evaluating kinetic parameters from thermal analysis data[J]. Journal of Polymer Science Part B: Polymer Letters, 1969, 7: 41-46. |
26 | 折媛, 巨建涛, 刘文果, 等. 长焰煤热解半焦气化反应动力学研究[J]. 冶金能源, 2019, 38(4): 20-24. |
She Y, Ju J T, Liu W G, et al. Study on gasification reaction kinetics of semi-coke derived from pyrolysis of long flame coal [J]. Metallurgical Energy, 2019, 38(4): 20-24. | |
27 | 刘亮, 邬海明, 陈明辉, 等. 脱脂餐厨垃圾燃烧特性及几种动力学模型结果比较[J]. 湖北大学学报(自然科学版), 2015, (2): 97-102. |
Liu L, Wu H M, Chen M H, et al. Combustion characteristics and comparison of several dynamic model results of degreased kitchen waste [J]. Journal of Hubei University(Natural Science), 2015, (2): 97-102. | |
28 | 马明硕, 朱琳, 徐利, 等. 农业废弃物葵花秆热解过程几种动力学模型结果比较[J]. 化学世界, 2015, (7): 385-388. |
Ma M S, Zhu L, Xu L, et al. Pyrolysis process of sunflower stem and its kinetic parameters with different methods [J]. Chemistry World, 2015, (7): 385-388. | |
29 | 周志杰, 范晓雷, 张薇, 等. 非等温热重分析研究煤焦气化动力学[J]. 煤炭学报, 2006, (2): 219-222. |
Zhou Z J, Fan X L, Zhang W, et al. Char gasification kinetics using non-isothermal TGA[J]. Journal of China Coal Society, 2006, (2): 219-222. |
[1] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[2] | 赵旭, 卜昌盛, 王昕晔, 张鑫, 程晓磊, 王乃继, 朴桂林. 铁基载氧体辅助无烟煤焦富氧燃烧动力学分析[J]. 化工学报, 2022, 73(1): 384-392. |
[3] | 周一帆, 姚丛雪, 王靖文, 郭文文, 宋磊, 牧小卫, 胡源. 大豆的热分解特性及其动力学探究[J]. 化工学报, 2020, 71(S2): 187-194. |
[4] | 李剑, 蒲舸, 陈家善, 刘啟文. 常见钠盐的高温挥发特性及热解机理[J]. 化工学报, 2020, 71(8): 3452-3459. |
[5] | 宋艳培, 庄修政, 詹昊, 徐彬, 阴秀丽, 吴创之. 城市污泥/褐煤共水热碳化产物的热化学转化特性及规律研究[J]. 化工学报, 2020, 71(5): 2320-2332. |
[6] | 魏利平,江国栋,古玉宽,滕海鹏. 五彩湾煤和吐鲁番煤热解动力学模型评估与应用[J]. 化工学报, 2019, 70(S2): 275-286. |
[7] | 辛善志, 黄芳, 刘晓烨, 许庆利, 米铁. 烘焙中药渣的热解与燃烧特性及其动力学分析[J]. 化工学报, 2019, 70(8): 3142-3150. |
[8] | 沈建华, 宋琦, 姚兵, 黄正梁, 王靖岱, 阳永荣. 钴离子对阳离子交换树脂氧化裂解反应的催化作用[J]. 化工学报, 2019, 70(7): 2548-2555. |
[9] | 张锦萍, 王长安, 贾晓威, 王鹏乾, 车得福. 半焦-烟煤混燃特性及动力学分析[J]. 化工学报, 2018, 69(8): 3611-3618. |
[10] | 徐鲁帅, 郝木明, 李勇凡, 杨文静, 王赟磊, 曹恒超. 液膜密封非定常工况下的瞬态特性[J]. 化工学报, 2018, 69(4): 1547-1557. |
[11] | 翟中媛, 金晶, 王永贞, 侯封校, 杨浩然, 李焕龙. 准东煤灰中的钙镁黄长石生成机理研究[J]. 化工学报, 2018, 69(12): 5266-5275. |
[12] | 郭源, 邵应娟, 钟文琪, 李开喜. 煤沥青球的氧化不熔化过程特性[J]. 化工学报, 2018, 69(1): 499-506. |
[13] | 江国栋, 魏利平, 滕海鹏, 郝惠娣. 基于热重法的准东煤等转化率热解动力学模型[J]. 化工学报, 2017, 68(4): 1415-1422. |
[14] | 黎演明, 李秉正, 杜芳黎, 冼学权, 黄华林, 唐培朵. 蔗渣碱法造纸黑液回收木质素的结构及其燃烧特性[J]. 化工学报, 2017, 68(1): 345-352. |
[15] | 曹海亮, 年志远, 杨浩林, 苏航, 汪小憨, 赵黛青. 平板狭缝间C1~C4烷烃/空气预混射流火焰的燃烧特性[J]. 化工学报, 2016, 67(11): 4609-4614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||