化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 187-194.DOI: 10.11949/0438-1157.20200224
收稿日期:
2020-03-03
修回日期:
2020-04-19
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
胡源
作者简介:
周一帆(1994—),男,硕士研究生,基金资助:
Yifan ZHOU(),Congxue YAO,Jingwen WANG,Wenwen GUO,Lei SONG,Xiaowei MU,Yuan HU()
Received:
2020-03-03
Revised:
2020-04-19
Online:
2020-11-06
Published:
2020-11-06
Contact:
Yuan HU
摘要:
动态热重分析(TGA)被用来研究大豆的热降解动力学,通过改变大豆热解时的升温速率(5,10,20和40℃/min)以及气氛条件(氮气和空气)探索了大豆在不同热解条件下的热解特性。并结合对相应热解条件下的动力学参数(表观活化能Ek)进行求解,探究了大豆的火灾安全性。结果表明,大豆的热解可以分为四个阶段:前两个阶段对应自由水和结晶水的脱除,后两个阶段对应主要成分(淀粉、蛋白质和脂肪)的次分解阶段和主要分解阶段。后两个阶段,由于氧气的存在,导致大豆的热分解出现了不同的历程,800℃时的残炭率降低。且与氮气气氛下热解相比,大豆在空气气氛下表现出更低的反应活化能和火灾安全性。
中图分类号:
周一帆, 姚丛雪, 王靖文, 郭文文, 宋磊, 牧小卫, 胡源. 大豆的热分解特性及其动力学探究[J]. 化工学报, 2020, 71(S2): 187-194.
Yifan ZHOU, Congxue YAO, Jingwen WANG, Wenwen GUO, Lei SONG, Xiaowei MU, Yuan HU. Study on thermal decomposition characteristics and kinetics of soybean[J]. CIESC Journal, 2020, 71(S2): 187-194.
元素 | 相对含量/ %(atom) |
---|---|
碳(C) | 49.41 |
氢(H) | 7.78 |
氧(O) | 37.35 |
氮(N) | 5.63 |
硫(S) | 0.42 |
表1 大豆的元素分析
Table 1 Element analysis of soybean
元素 | 相对含量/ %(atom) |
---|---|
碳(C) | 49.41 |
氢(H) | 7.78 |
氧(O) | 37.35 |
氮(N) | 5.63 |
硫(S) | 0.42 |
升温速率/ (℃/min) | 气氛 | 第一阶段 | 第二阶段 | 第三阶段 | 第四阶段 | 水除外的 总失重率/% | ||||
---|---|---|---|---|---|---|---|---|---|---|
热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | |||
5 | 氮气 | RT~173 | 5 | 173~248 | 13 | 248~321 | 23 | 321~497 | 37 | 76 |
空气 | RT~173 | 5 | 173~248 | 13 | 248~347 | 36 | 347~526 | 36 | 89 | |
10 | 氮气 | RT~183 | 2 | 183~262 | 13 | 262~334 | 27 | 334~516 | 38 | 79 |
空气 | RT~183 | 2 | 183~262 | 13 | 262~358 | 39 | 358~553 | 39 | 92 | |
20 | 氮气 | RT~192 | 6 | 192~267 | 13 | 267~342 | 26 | 342~548 | 35 | 78 |
空气 | RT~192 | 6 | 192~267 | 13 | 267~371 | 37 | 371~568 | 37 | 92 | |
40 | 氮气 | RT~209 | 6 | 209~282 | 13 | 282~358 | 28 | 358~560 | 34 | 79 |
空气 | RT~209 | 6 | 209~282 | 13 | 282~400 | 42 | 400~650 | 33 | 93 |
表2 大豆的各个失重阶段和对应的失重率
Table 2 Mass loss stages and corresponding mass loss rate of soybean
升温速率/ (℃/min) | 气氛 | 第一阶段 | 第二阶段 | 第三阶段 | 第四阶段 | 水除外的 总失重率/% | ||||
---|---|---|---|---|---|---|---|---|---|---|
热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | 热解温度/℃ | 失重率/% | |||
5 | 氮气 | RT~173 | 5 | 173~248 | 13 | 248~321 | 23 | 321~497 | 37 | 76 |
空气 | RT~173 | 5 | 173~248 | 13 | 248~347 | 36 | 347~526 | 36 | 89 | |
10 | 氮气 | RT~183 | 2 | 183~262 | 13 | 262~334 | 27 | 334~516 | 38 | 79 |
空气 | RT~183 | 2 | 183~262 | 13 | 262~358 | 39 | 358~553 | 39 | 92 | |
20 | 氮气 | RT~192 | 6 | 192~267 | 13 | 267~342 | 26 | 342~548 | 35 | 78 |
空气 | RT~192 | 6 | 192~267 | 13 | 267~371 | 37 | 371~568 | 37 | 92 | |
40 | 氮气 | RT~209 | 6 | 209~282 | 13 | 282~358 | 28 | 358~560 | 34 | 79 |
空气 | RT~209 | 6 | 209~282 | 13 | 282~400 | 42 | 400~650 | 33 | 93 |
参数 | 氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|---|
失重峰1(235℃) | 失重峰2(325℃) | 失重峰3(384℃) | 失重峰1(235℃) | 失重峰2(326℃) | 失重峰3(486℃) | |
R | -0.996 | -0.998 | -0.996 | -0.997 | -0.925 | -0.795 |
E /(kJ/mol) | 114.761 | 162.501 | 128.918 | 131.869 | 71.973 | 48.336 |
表3 大豆在氮气和空气气氛下各分解峰的分解活化能
Table 3 Decomposition activation energy of each decomposition peak of soybean in nitrogen and air
参数 | 氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|---|
失重峰1(235℃) | 失重峰2(325℃) | 失重峰3(384℃) | 失重峰1(235℃) | 失重峰2(326℃) | 失重峰3(486℃) | |
R | -0.996 | -0.998 | -0.996 | -0.997 | -0.925 | -0.795 |
E /(kJ/mol) | 114.761 | 162.501 | 128.918 | 131.869 | 71.973 | 48.336 |
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.83 | 94.1 | 0.1 | -1.00 | 116.5 |
0.2 | -0.83 | 114.9 | 0.2 | -0.97 | 114.9 |
0.3 | -0.94 | 162.5 | 0.3 | -0.94 | 116.5 |
0.4 | -0.97 | 199.3 | 0.4 | -0.93 | 123.1 |
0.5 | -0.98 | 259.0 | 0.5 | -0.94 | 144.8 |
0.6 | -0.99 | 255.8 | 0.6 | -0.96 | 257.7 |
0.7 | -1.00 | 198.3 | 0.7 | -0.86 | 401.5 |
0.8 | -1.00 | 222.5 | 0.8 | -0.87 | 133.8 |
0.9 | -0.94 | 301.5 | 0.9 | -0.84 | 80.2 |
表4 大豆在不同气氛下热解的转化率对应阶段的活化能(F-W-O法)
Table 4 Activation energy of each conversion corresponding to the stage of soybean pyrolysis in different atmosphere (F-W-O method)
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.83 | 94.1 | 0.1 | -1.00 | 116.5 |
0.2 | -0.83 | 114.9 | 0.2 | -0.97 | 114.9 |
0.3 | -0.94 | 162.5 | 0.3 | -0.94 | 116.5 |
0.4 | -0.97 | 199.3 | 0.4 | -0.93 | 123.1 |
0.5 | -0.98 | 259.0 | 0.5 | -0.94 | 144.8 |
0.6 | -0.99 | 255.8 | 0.6 | -0.96 | 257.7 |
0.7 | -1.00 | 198.3 | 0.7 | -0.86 | 401.5 |
0.8 | -1.00 | 222.5 | 0.8 | -0.87 | 133.8 |
0.9 | -0.94 | 301.5 | 0.9 | -0.84 | 80.2 |
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.9 | 109.3 | 0.1 | -0.99 | 125.9 |
0.2 | -0.88 | 128.6 | 0.2 | -0.93 | 112.9 |
0.3 | -0.98 | 179.0 | 0.3 | -0.92 | 119.5 |
0.4 | -0.99 | 228.5 | 0.4 | -0.92 | 131.5 |
0.5 | -0.99 | 295.5 | 0.5 | -0.96 | 185.6 |
0.6 | -0.99 | 222.0 | 0.6 | -0.99 | 390.7 |
0.7 | -1.00 | 173.3 | 0.7 | -0.82 | 396.2 |
0.8 | -0.98 | 312.5 | 0.8 | -0.17 | 22.2 |
0.9 | -0.93 | 286.5 | 0.9 | -0.65 | 36.4 |
表5 大豆在不同气氛下热解的转化率对应阶段的活化能(Friedman法)
Table 5 Activation energy of each conversion corresponding to the stage of soybean pyrolysis in different atmosphere (Friedman method)
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.9 | 109.3 | 0.1 | -0.99 | 125.9 |
0.2 | -0.88 | 128.6 | 0.2 | -0.93 | 112.9 |
0.3 | -0.98 | 179.0 | 0.3 | -0.92 | 119.5 |
0.4 | -0.99 | 228.5 | 0.4 | -0.92 | 131.5 |
0.5 | -0.99 | 295.5 | 0.5 | -0.96 | 185.6 |
0.6 | -0.99 | 222.0 | 0.6 | -0.99 | 390.7 |
0.7 | -1.00 | 173.3 | 0.7 | -0.82 | 396.2 |
0.8 | -0.98 | 312.5 | 0.8 | -0.17 | 22.2 |
0.9 | -0.93 | 286.5 | 0.9 | -0.65 | 36.4 |
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.77 | 61.9 | 0.1 | -1.00 | 114.2 |
0.2 | -0.82 | 111.1 | 0.2 | -0.97 | 111.8 |
0.3 | -0.94 | 161.2 | 0.3 | -0.93 | 112.9 |
0.4 | -0.97 | 199.4 | 0.4 | -0.92 | 119.4 |
0.5 | -0.98 | 258.5 | 0.5 | -0.93 | 141.9 |
0.6 | -0.99 | 257.7 | 0.6 | -0.96 | 260.2 |
0.7 | -1.00 | 201.1 | 0.7 | -1.00 | 201.1 |
0.8 | -1.00 | 224.1 | 0.8 | -1.00 | 224.1 |
0.9 | -0.93 | 303.3 | 0.9 | -0.93 | 79.2 |
表6 大豆在不同气氛下热解的转化率对应阶段的活化能(DAEM法)
Table 6 Activation energy of each conversion corresponding to the stage of soybean pyrolysis in different atmosphere (DAEM method)
氮气气氛 | 空气气氛 | ||||
---|---|---|---|---|---|
α | r | E/(kJ/mol) | α | r | E/(kJ/mol) |
0.1 | -0.77 | 61.9 | 0.1 | -1.00 | 114.2 |
0.2 | -0.82 | 111.1 | 0.2 | -0.97 | 111.8 |
0.3 | -0.94 | 161.2 | 0.3 | -0.93 | 112.9 |
0.4 | -0.97 | 199.4 | 0.4 | -0.92 | 119.4 |
0.5 | -0.98 | 258.5 | 0.5 | -0.93 | 141.9 |
0.6 | -0.99 | 257.7 | 0.6 | -0.96 | 260.2 |
0.7 | -1.00 | 201.1 | 0.7 | -1.00 | 201.1 |
0.8 | -1.00 | 224.1 | 0.8 | -1.00 | 224.1 |
0.9 | -0.93 | 303.3 | 0.9 | -0.93 | 79.2 |
气氛 | 大豆各转化率对应阶段的平均表观活化能/(kJ/mol) | ||||||||
---|---|---|---|---|---|---|---|---|---|
α=0.1 | α=0.2 | α=0.3 | α=0.4 | α=0.5 | α=0.6 | α=0.7 | α=0.8 | α=0.9 | |
氮气 | 88.4 | 118.2 | 167.6 | 209.1 | 271.0 | 245.2 | 190.9 | 253.0 | 297.1 |
空气 | 118.9 | 113.2 | 116.3 | 124.7 | 157.4 | 302.9 | 332.9 | 126.7 | 65.2 |
表7 不同计算方法求得的大豆热解表观活化能的平均值
Table 7 Average value of apparent activation energy of soybean pyrolysis obtained by different calculation methods
气氛 | 大豆各转化率对应阶段的平均表观活化能/(kJ/mol) | ||||||||
---|---|---|---|---|---|---|---|---|---|
α=0.1 | α=0.2 | α=0.3 | α=0.4 | α=0.5 | α=0.6 | α=0.7 | α=0.8 | α=0.9 | |
氮气 | 88.4 | 118.2 | 167.6 | 209.1 | 271.0 | 245.2 | 190.9 | 253.0 | 297.1 |
空气 | 118.9 | 113.2 | 116.3 | 124.7 | 157.4 | 302.9 | 332.9 | 126.7 | 65.2 |
1 | 丁超. 储粮机械通风技术拓展研究[D]. 南京: 南京财经大学, 2010. |
Ding C. Research on mechanical ventilation technology development of grain storage [D]. Nanjing: Nanjing University of Finance and Economics, 2010. | |
2 | 徐昌荣. 防止粮食自燃[J]. 中国西部科技, 2005, (17): 56. |
Xu C R. Prevention of grain spontaneous combustion [J]. Science and Technology of Western China, 2005, (17): 56 | |
3 | 张桂芝. 粮食仓储降本增效途径探析[J]. 化工管理, 2019, (10): 73-74. |
Zhang G Z. Approach to reducing cost and increasing efficiency of grain storage [J]. Chemical Management, 2019, (10): 73-74. | |
4 | 彭文才. 农作物秸秆水热液化过程及机理的研究[D]. 上海: 华东理工大学, 2011. |
Peng W C. Study on the hydrothermal liquefaction process and mechanism of crop straw [D]. Shanghai: East China University of Science and Technology, 2011. | |
5 | 张冀翔. 生物油在亚临界、超临界流体中的制备与提质改性研究[D]. 杭州: 浙江大学, 2013. |
Zhang J X. Study on the preparation and quality improvement of bio oil in subcritical and supercritical fluids [D]. Hangzhou: Zhejiang University, 2013. | |
6 | Dong H, Xiao K, Xian Y. Isotope ratio mass spectrometry coupled to element analyzer and liquid chromatography to identify commercial honeys of various botanical types[J]. Food Analytical Methods, 2017, 10(8): 2755-2763. |
7 | Hu M, Chen Z, Wang S, et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method[J]. Energy Conversion and Management, 2016, 118: 1-11. |
8 | Fang S, Yu Z, Ma X, et al. Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)[J]. Energy, 2018, 143: 517-532. |
9 | Huang X, Cao J, Zhao X, et al. Pyrolysis kinetics of soybean straw using thermogravimetric analysis[J]. Fuel, 2016, 169: 93-98. |
10 | Aslan D I, Parthasarathy P, Goldfarb J L, et al. Pyrolysis reaction models of waste tires: application of master-plots method for energy conversion via devolatilization[J]. Waste Management, 2017, 68: 405-411. |
11 | Fu C D, He Y, Pfaendtner J. Diagnosing the impact of external electric fields chemical kinetics: application to toluene oxidation and pyrolysis[J]. The Journal of Physical Chemistry A, 2019, 123(14): 3080-3089. |
12 | Rony A H, Kong L, Lu W, et al. Kinetics, thermodynamics, and physical characterization of corn stover (Zea mays) for solar biomass pyrolysis potential analysis[J]. Bioresource Technology, 2019, 284: 466-473. |
13 | Bach Q, Chen W. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review[J]. Bioresource Technology, 2017, 246: 88-100. |
14 | Özsin G, Pütün A E. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR[J]. Waste Management, 2017, 64: 315-326. |
15 | Liu H, Ahmad M S, Alhumade H, et al. A hybrid kinetic and optimization approach for biomass pyrolysis: the hybrid scheme of the isoconversional methods, DAEM, and a parallel-reaction mechanism[J]. Energy Conversion and Management, 2020, 208: 112531. |
16 | Li D, Chen L, Zhao J, et al. Evaluation of the pyrolytic and kinetic characteristics of enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China[J]. Chemical Engineering Research & Design, 2010, 88(5/6A): 647-652. |
17 | Huang X, Cao J, Zhao X, et al. Pyrolysis kinetics of soybean straw using thermogravimetric analysis[J]. Fuel, 2016, 169: 93-98. |
18 | Suárez S, Rosas J G, Sánchez M E, et al. Parametrization of a modified friedman kinetic method to assess vine wood pyrolysis using thermogravimetric analysis[J]. Energies, 2019, 12(13): 2599. |
19 | Lim A C R, Chin B L F, Jawad Z A, et al. Kinetic analysis of rice husk pyrolysis using Kissinger-Akahira-Sunose (KAS) method[J]. Procedia Engineering, 2016, 148: 1247-1251. |
20 | Ding Y, Zhang Y, Zhang J, et al. Kinetic parameters estimation of pinus sylvestris pyrolysis by Kissinger-Kai method coupled with particle swarm optimization and global sensitivity analysis[J]. Bioresource Technology, 2019, 293: 122079. |
21 | 于寒松, 黄明伟, 赵永程, 等. 大豆成分与豆浆和豆腐特性的研究[J]. 食品工业, 2015, 36(4): 7-10. |
Yu H S, Huang M W, Zhao Y C, et al. Study on soybean composition and characteristics of soybean milk and tofu [J]. Food Industry, 2015, 36 (4): 7-10. | |
22 | 毛红艳, 徐鑫, 于明. 新疆地区玉米品种营养品质主成分分析与评价[J]. 新疆农业科学, 2018, 55(10): 1909-1915. |
Mao H Y, Xu X, Yu M. Principal component analysis and evaluation of nutritional quality of Maize Varieties in Xinjiang [J]. Xinjiang Agricultural Science, 2018, 55 (10): 1909-1915. | |
23 | 王永兵. 稻米不同剖层成分含量及镁调控对水稻食味品质的影响[D]. 沈阳: 沈阳农业大学, 2018. |
Wang Y B. Effects of different components and magnesium regulation on rice taste quality [D]. Shenyang: Shenyang Agricultural University, 2018. | |
24 | Acioli-Moura R, Sun X S. Thermal degradation and physical aging of poly(lactic acid) and its blends with starch[J]. Polymer Engineering and Science. 2008, 48(4): 829-836. |
25 | Yang S I, Wu M S. The droplet combustion and thermal characteristics of pinewood bio-oil from slow pyrolysis[J]. Energy, 2017, 141: 2377-2386. |
26 | Soares R, Scremin F F, Soldi V. Thermal stability of biodegradable films based on soy protein and corn starch[J]. Macromolecular Symposia, 2005, 229: 258-265. |
27 | Ding Y, Ezekoye O A, Lu S, et al. Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood[J]. Energy Conversion and Management. 2017, 132: 102-109. |
28 | 胡荣祖. 热分析动力学[M]. 2版. 北京: 科学出版社, 2008: 14, 443. |
Hu R Z. Thermal Analysis Dynamics [M]. 2nd ed. Beijing: Science Press, 2008: 14, 443. | |
29 | Aboulkas A, Harfi R E, Bouadili R E. Thermal degradation behaviors of polyethylene and polypropylene(Ⅰ): Pyrolysis kinetics and mechanisms[J]. Energy Conversion & Management. 2010, 51(7): 1363-1369. |
30 | Radojević M, Janković B, Jovanović V, et al. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure[J]. PLoS ONE, 2018, 13(10): e0206657. |
31 | Shen D K, Gu S, Jin B, et al. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods[J]. Bioresource Technology, 2011, 102(2): 2047-2052. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[6] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[7] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[10] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[11] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[12] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[13] | 葛泽峰, 吴雨青, 曾名迅, 查振婷, 马宇娜, 侯增辉, 张会岩. 灰化学成分对生物质气化特性的影响规律[J]. 化工学报, 2023, 74(5): 2136-2146. |
[14] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[15] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||