化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3452-3459.DOI: 10.11949/0438-1157.20200061
收稿日期:
2020-01-15
修回日期:
2020-03-10
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
蒲舸
作者简介:
李剑(1987—),男,硕士研究生,基金资助:
Jian LI1,2(),Ge PU1,2(
),Jiashan CHEN1,2,Qiwen LIU1,2
Received:
2020-01-15
Revised:
2020-03-10
Online:
2020-08-05
Published:
2020-08-05
Contact:
Ge PU
摘要:
选取有机废液中常见的钠盐(氯化钠、碳酸钠、硫酸钠、甲酸钠、乙酸钠、草酸钠),通过热重分析仪,在25~1400℃考察其高温挥发特性。基于Gibbs自由能最小原理,对NaCl、Na2CO3及Na2SO4的挥发特性进行热力学计算。结果表明,在N2气氛中,NaCl在达到熔点后以气态NaCl及气态Na2Cl2的形式释放,Na2SO4升温至885℃分解生成Na2O,同时Na2O分解,并以Na单质形式释放。而有机羧酸钠盐在600℃之前均热解为Na2CO3,继续升高温度则分解为Na2O,同样最后以气态Na单质的形式释放。在空气气氛中,由于O2的存在,抑制了Na2O的分解反应,致使Na2CO3分解速率小于N2气氛。
中图分类号:
李剑, 蒲舸, 陈家善, 刘啟文. 常见钠盐的高温挥发特性及热解机理[J]. 化工学报, 2020, 71(8): 3452-3459.
Jian LI, Ge PU, Jiashan CHEN, Qiwen LIU. High-temperature volatility characteristics and pyrolysis mechanism of common sodium salts[J]. CIESC Journal, 2020, 71(8): 3452-3459.
Compound | Fusion point/℃ | Degradation stage | ||
---|---|---|---|---|
Temperature interval/℃ | Pyrolysis products | TG/% | ||
NaCl | 803 | 808—1153 | NaCl(g),Na2Cl2(g) | 100.0 |
Na2CO3 | 851 | 853—1280 | Na2O,Na(g) | 69.9 |
1280—1400 | Na(g) | 4.4 | ||
Na2SO4 | 885 | 1105—1400 | Na2O,Na(g) | 21.5 |
HCOONa | 226 | 372—440 | Na2C2O4,Na2CO3 | 12 |
553—573 | Na2CO3 | 7.5 | ||
855—1260 | Na2O,Na(g) | 31.4 | ||
1260—1400 | Na(g) | 1.7 | ||
CH3COONa | 308 | 416—530 | Na2CO3 | 34.2 |
858—1232 | Na2O,Na(g) | 35.4 | ||
1232—1400 | Na(g) | 4.4 | ||
NaOOC—COONa | — | 540—576 | Na2CO3 | 17.6 |
864—1190 | Na2O,Na(g) | 45.1 | ||
1190—1400 | Na(g) | 5.9 |
表1 钠盐的分解特性参数
Table 1 Pyrolysis characteristics of sodium salts
Compound | Fusion point/℃ | Degradation stage | ||
---|---|---|---|---|
Temperature interval/℃ | Pyrolysis products | TG/% | ||
NaCl | 803 | 808—1153 | NaCl(g),Na2Cl2(g) | 100.0 |
Na2CO3 | 851 | 853—1280 | Na2O,Na(g) | 69.9 |
1280—1400 | Na(g) | 4.4 | ||
Na2SO4 | 885 | 1105—1400 | Na2O,Na(g) | 21.5 |
HCOONa | 226 | 372—440 | Na2C2O4,Na2CO3 | 12 |
553—573 | Na2CO3 | 7.5 | ||
855—1260 | Na2O,Na(g) | 31.4 | ||
1260—1400 | Na(g) | 1.7 | ||
CH3COONa | 308 | 416—530 | Na2CO3 | 34.2 |
858—1232 | Na2O,Na(g) | 35.4 | ||
1232—1400 | Na(g) | 4.4 | ||
NaOOC—COONa | — | 540—576 | Na2CO3 | 17.6 |
864—1190 | Na2O,Na(g) | 45.1 | ||
1190—1400 | Na(g) | 5.9 |
1 | 赵劲潮, 马增益, 陈宇明, 等. 高含盐有机废水流化床焚烧过程碱金属盐的迁移规律研究[J]. 能源与环境, 2016, 137(4): 51-55. |
Zhao J C, Ma Z Y, Chen Y M, et al. Migration of alkali metal salts of high salinity organic wastewater in fluidized bed combustion[J]. Energy and Environment, 2016, 137(4): 51-55. | |
2 | 陈宇明. 含盐高浓度有机废液流化床焚烧灰渣黏结特性研究[D]. 杭州: 浙江大学, 2017. |
Chen Y M. Study of slag cohesive behavior in fluidized bed incineration of high salinity organic wastewater[D]. Hangzhou: Zhejiang University, 2017. | |
3 | Mao L R, Li H X, Zhang Y C, et al. Preparing coal water slurry from BDO tar to achieve resource utilization: combustion process of BDO tar-coal water slurry[J]. Energy & Fuels, 2019, 33(10): 10297-10306. |
4 | 闫景春, 沈来宏, 蒋守席, 等. 高钠煤化学链燃烧特性及煤焦气化反应动力学研究[J]. 化工学报, 2019, 70(5): 1913-1922. |
Yan J C, Shen L H, Jiang S X, et al. Chemical looping combustion of high-sodium coal and gasification kinetics of coal char [J]. CIESC Journal, 2019, 70(5): 1913-1922. | |
5 | Wang C A, Zhu X, Liu X, et al. Correlations of chemical properties of high-alkali solid fuels: a comparative study between Zhundong coal and biomass[J]. Fuel, 2018, 211: 629-637. |
6 | Qi X B, Song G L, Yang S B, et al. Exploration of effective bed material for use as slagging/agglomeration preventatives in circulating fluidized bed gasification of high-sodium lignite[J]. Fuel, 2018, 217: 577-586. |
7 | Ji H S, Wu X J, Dai B Q, et al. Xinjiang lignite ash slagging and flow under the weak reducing environment at 1300℃–release of sodium out of slag and its modelling from the mass transfer perspective[J]. Fuel Processing Technology, 2018, 170: 32-43. |
8 | Chen R Y, Jia W B, Xu X Y, et al. Optimization of the corrosion behavior of mullite-SiC castable against alkali vapor via coating high temperature glaze[J]. Journal of Alloys and Compounds, 2019, 770: 945-951. |
9 | Weinberg A V, Varona C, Chaucherie X, et al. Corrosion of Al2O3-SiO2 refractories by sodium and sulfur vapors: a case study on hazardous waste incinerators[J]. Ceramics International, 2017, 43(7): 5743-5750. |
10 | 孟晓晓, 孙锐, 袁皓, 等. 不同热解温度下玉米秸秆中碱金属K和Na的释放及半焦中赋存特性[J]. 化工学报, 2017, 68(4): 1600-1607. |
Meng X X, Sun R, Yuan H, et al. Effect of different pyrolysis temperature on alkali metal K and Na emission and exitence in semi-char[J]. CIESC Journal, 2017, 68(4): 1600-1607. | |
11 | Niu Y Q, Gong Y H, Zhang X, et al. Effects of leaching and additives on the ash fusion characteristics of high-Na/Ca Zhundong coal[J]. Journal of the Energy Institute, 2019, 92(4): 1115-1122. |
12 | Liu Y Q, Cheng L M, Zhao Y G, et al. Transformation behavior of alkali metals in high-alkali coals[J]. Fuel Processing Technology, 2018, 169: 288-294. |
13 | Kerscher F, Stetka M, Spliethoff H. The reaction kinetics of gaseous alkali capture by kaolin in syngas atmosphere[J]. Chemical Engineering & Technology, 2018, 41(9): 1881-1888. |
14 | 张军, 汉春利, 刘坤磊, 等. 煤中碱金属及其在燃烧中的行为[J]. 热能动力工程, 1999, 80(14): 83-85. |
Zhang J, Han C L, Liu K L, et al. Alkali metals in coal and their behavior in combustion[J]. Journal of Engineering for Thermal Energy and Power, 1999, 80(14): 83-85. | |
15 | Ji J Q, Cheng L M, Liu Y Q, et al. Investigation on sodium fate for high alkali coal during circulating fluidized bed combustion[J]. Energy & Fuels, 2019, 33(2): 916-926. |
16 | 卫小芳, 刘铁峰, 黄戒介, 等. 澳大利亚高盐煤中钠在热解过程中的形态变迁[J]. 燃料化学学报, 2010, 38(2): 144-148. |
Wei X F, Liu T F, Huang J J, et al.Transformation of Na in an Australian high-sodium coal during pyrolysis[J]. Fuel Chem. Technol., 2010, 38(2): 144-148. | |
17 | 陈慧琴. 钠盐的高温挥发及其与水泥生料矿物的固相反应行为研究[D]. 武汉: 华中科技大学, 2016. |
Chen H Q. High-temperature volatilization of sodium salts and their solid-phase reactions with cement raw materials[D]. Wuhan: Huazhong University of Science & Technology, 2016. | |
18 | Ji J Q, Cheng L M, Liu Y Q, et al. Direct measurement of gaseous sodium in flue gas for high-alkali coal[J]. Energy & Fuels, 2019, 33: 4169-4176. |
19 | Wang Y W, Wang Z Q, Huang J J, et al. Investigation into the characteristics of Na2CO3-catalyzed steam gasification for a high-aluminum coal char[J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(2): 1213-1220. |
20 | Nascimento A L C S, Teixeira J A, Nunes W D G, et al. Thermal behavior of glycolic acid, sodium glycolate and its compounds with some bivalent transition metal ions in the solid state[J]. Journal of Thermal Analysis and Calorimetry, 2017, 130(12): 1463-1472. |
21 | 刘朝文. 甲酸钠脱氢制草酸钠的动力学研究[D]. 北京: 北京化工大学, 2007. |
Liu Z W. Reaction kinetics of sodium oxlate from sodium formate by dehydrogenation[D]. Beijing: Beijing University of Chemical Technology, 2007. | |
22 | Marcilla A, Gómez-Siurana A, Beltrán M, et al. TGA/FTIR study of the behavior of sodium and potassium citrates in the decomposition of 3R4F tobacco N2 and air atmospheres[J]. Thermochimica Acta, 2017, 625: 31-38. |
23 | 彭强, 杨晓西, 丁静, 等. 三元硝酸熔盐高温热稳定性实验研究与机理分析[J]. 化工学报, 2013, 64(5): 1507-1512. |
Peng Q, Yang X X, Ding J, et al. Experimental study and mechanism analysis for high-temperature thermal stability of ternary nitrate salt[J]. CIESC Journal, 2013, 64(5): 1507-1512. | |
24 | 赵柏岑, 丁静, 魏小兰, 等. LiNO3-NaNO3-KNO3三元熔盐材料的设计及热稳定性研究[J]. 化工学报, 2019, 70(6): 2083-2090. |
Zhao B C, Ding J, Wei X L, et al. Design and thermal stability study of LiNO3-NaNO3-KNO3 ternary molten salt system[J]. CIESC Journal, 2019, 70(6): 2083-2090. | |
25 | Du L C, Ding J, Tian H Q, et al. Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process[J]. Applied Energy, 2017, 204: 1225-1230. |
26 | Jiang Y F, Sun Y P, Liu M, et al. Eutectic Na2CO3-NaCl salt: a new phase change material for high temperature thermal storage[J]. Solar Energy Materials & Solar Cells, 2016, 152: 155-160. |
27 | Ye L G, Tang C B, Chen Y M, et al. The thermal physical properties and stability of the eutectic composition in a Na2CO3–NaCl binary system[J]. Thermochimica Acta, 2014, 596: 14-20. |
28 | Gao Q, Li S Q, Yuan Y, et al. Ultrafine particulate matter formation in the early stage of pulverized coal combustion of high-sodium lignite[J]. Fuel, 2015, 158: 224-231. |
29 | Tanner J, Bläsing M, Müller M, et al. The temperature-dependent release of volatile inorganic species from Victorian brown coals and German lignites under CO2 and H2O gasification conditions[J]. Fuel, 2015, 158: 72-80. |
30 | 刘光启, 马连湘, 刘杰, 等. 化学化工物性数据手册[M]. 北京: 化学工业出版社, 2002. |
Liu G Q, Ma L X, Liu J, et al. Properties Databook of Chemistry and Chemical Engineering[M]. Beijing: Chemical Industry Press, 2002. | |
31 | 张伟伟, 陈晓春, 刘朝文, 等. 甲酸钠热分解行为的实验研究[J]. 北京化工大学学报, 2007, 34(6): 566-569. |
Zhang W W, Chen X C, Liu Z W, et al. Formation of sodium oxalate by thermal decomposition of sodium formate[J]. Journal of Beijing University of Chemical Technology, 2007, 34(6): 566-569. | |
32 | Stjernberg J, Lindblom B, Wikström J, et al. Microstructural characterization of alkali metal mediated high temperature reactions in mullite based refractories[J]. Ceramics International, 2010, 36(2): 733-740. |
33 | 尹洪基. 红柱石——一种优异的抗钠蒸气侵蚀的耐火原料[J]. 耐火与石灰, 2013, 38(1): 43-48. |
Yin H J. Andalusite—an excellent refractory material which is resistant to sodium vapor erosion[J]. Refractories & Lime, 2013, 38(1): 43-48. | |
34 | 刘璐. 碱金属与耐火材料反应特性研究[D]. 北京: 华北电力大学, 2016. |
Liu L. Research on alkali reaction with refractories[D]. Beijing: North China Electric Power University, 2016. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[10] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[11] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[12] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[13] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[14] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[15] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1311
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 3838
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||