化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2680-2687.DOI: 10.11949/0438-1157.20201394
收稿日期:
2020-10-09
修回日期:
2020-12-29
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
吴春梅
作者简介:
宋本南(1995—),男,硕士研究生,基金资助:
SONG Bennan(),WU Chunmei(),LI Yourong
Received:
2020-10-09
Revised:
2020-12-29
Online:
2021-05-05
Published:
2021-05-05
Contact:
WU Chunmei
摘要:
为了深入探讨气固界面吸附过程中团簇分布及其演化规律,结合实验测量和理论分析研究了水蒸气在二氧化硅和石墨表面的吸附特征,获取了不同压比下的团簇分布,确定了吸附相变及润湿转变的临界条件。结果表明,实验测量结果和Zeta吸附理论预测吸附曲线吻合很好,明确了气体分子以团簇形式吸附在固体表面,在低压比区,小分子团簇和零吸附单元占主导地位,随着压比的增加,吸附团簇类型增多,当压比达到某一临界值时,吸附熵达到极大值,界面发生吸附相变。确定了零吸附情况下石墨和二氧化硅表面张力及界面润湿临界条件,润湿压比下,性质均一的大分子团簇聚集,形成类液膜润湿界面。
中图分类号:
宋本南, 吴春梅, 李友荣. 气固界面吸附团簇分布及相变机制研究[J]. 化工学报, 2021, 72(5): 2680-2687.
SONG Bennan, WU Chunmei, LI Yourong. Investigation on cluster distribution and phase transition of adsorption at solid-vapor interface[J]. CIESC Journal, 2021, 72(5): 2680-2687.
吸附质 | 吸附剂 | M/ (μmol/m2) | c | α | ζm | Δ(ζ)/% |
---|---|---|---|---|---|---|
水蒸气 | 石墨 | 0.416 | 3.713 | 0.966 | 60 | 0.42 |
水蒸气 | 二氧化硅 | 7.988 | 16.626 | 0.993 | 70 | 1.01 |
表1 Zeta等温吸附参数
Table 1 Zeta isothermal parameters
吸附质 | 吸附剂 | M/ (μmol/m2) | c | α | ζm | Δ(ζ)/% |
---|---|---|---|---|---|---|
水蒸气 | 石墨 | 0.416 | 3.713 | 0.966 | 60 | 0.42 |
水蒸气 | 二氧化硅 | 7.988 | 16.626 | 0.993 | 70 | 1.01 |
1 | 刘有毅, 黄艳, 何嘉杰, 等. CO/N2/CO2在MOF-74(Ni)上吸附相平衡和选择性[J]. 化工学报, 2015, 66(11): 4469-4475. |
Liu Y Y, Huang Y, He J J, et al. Adsorption isotherms and selectivity of CO/N2/CO2 on MOF-74(Ni)[J]. CIESC Journal, 2015, 66(11): 4469-4475. | |
2 | 张所瀛, 刘红, 刘朋飞, 等. 金属有机骨架材料在CO2/CH4吸附分离中的研究进展[J]. 化工学报, 2014, 65(5): 1563-1570. |
Zhang S Y, Liu H, Liu P F, et al. Progress of adsorption-based CO2/CH4 separation by metal organic frameworks[J]. CIESC Journal, 2014, 65(5): 1563-1570. | |
3 | 罗仙平, 李健昌, 严群, 等. 处理低浓度氨氮废水吸附材料的筛选[J]. 化工学报, 2010, 61(1): 216-222. |
Luo X P, Li J C, Yan Q, et al. Screening of optimum adsorbents for treating wastewater containing low concentration ammonia-nitrogen[J]. CIESC Journal, 2010, 61(1): 216-222. | |
4 | 任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94. |
Ren N Q, Zhou X J, Guo W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94. | |
5 | Ishihara K, Ziats N P, Tierney B P, et al. Protein adsorption from human plasma is reduced on phospholipid polymers[J]. Journal of Biomedical Materials Research, 1991, 25(11): 1397-1407. |
6 | Lord M S, Foss M, Besenbacher F. Influence of nanoscale surface topography on protein adsorption and cellular response[J]. Nano Today, 2010, 5(1): 66-78. |
7 | Narayanan S, Yang S, Kim H, et al. Optimization of adsorption processes for climate control and thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2014, 77: 288-300. |
8 | Langmuir I. The dissociation of hydrogen into atoms(Ⅲ): The mechanism of the reaction[J]. Journal of the American Chemical Society, 1916, 38(6): 1145-1156. |
9 | Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. |
10 | Tompkins F C. Physical adsorption on non-uniform surfaces[J]. Transactions of the Faraday Society, 1950, 46: 569. |
11 | Hill T L. Theory of physical adsorption[J]. Advances in Catalysis, 1952, 4: 211-258. |
12 | Scheufele F B, Módenes A N, Borba C E, et al. Monolayer-multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics[J]. Chemical Engineering Journal, 2016, 284: 1328-1341. |
13 | Laaksonen A. A unifying model for adsorption and nucleation of vapors on solid surfaces[J]. The Journal of Physical Chemistry A, 2015, 119(16): 3736-3745. |
14 | Anderson R B, Hall W K. Modifications of the Brunauer, Emmett and Teller equation [J]. Journal of the American Chemical Society, 1948, 70(5): 1727-1734. |
15 | Foo K Y, Hameed B H. Insights into the modeling of adsorption isotherm systems[J]. Chemical Engineering Journal, 2010, 156(1): 2-10. |
16 | Kong L L, Adidharma H. A new adsorption model based on generalized van der Waals partition function for the description of all types of adsorption isotherms[J]. Chemical Engineering Journal, 2019, 375: 122112. |
17 | Buttersack C. Modeling of type IV and V sigmoidal adsorption isotherms[J]. Physical Chemistry Chemical Physics, 2019, 21(10): 5614-5626. |
18 | Petsev N D, Leal L G, Shell M S. Universal gas adsorption mechanism for flat nanobubble morphologies[J]. Physical Review Letters, 2020, 125(14): 146101. |
19 | Talu O, Myers A L. Rigorous thermodynamic treatment of gas adsorption[J]. AIChE Journal, 1988, 34(11): 1887-1893. |
20 | Toth J. State equations of the solid gas interface layer[J]. Acta Chimica Academiae Scientiarum Hungaricae, 1971, 69: 311-317. |
21 | Schlangen L J M, Koopal L K, Cohen Stuart M A, et al. Wettability: thermodynamic relationships between vapour adsorption and wetting[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 89(2/3): 157-167. |
22 | Kaplan W D, Chatain D, Wynblatt P, et al. A review of wetting versus adsorption, complexions, and related phenomena: the Rosetta stone of wetting[J]. Journal of Materials Science, 2013, 48(17): 5681-5717. |
23 | Laaksonen A, Malila J. An adsorption theory of heterogeneous nucleation of water vapour on nanoparticles[J]. Atmospheric Chemistry and Physics, 2016, 16(1): 135-143. |
24 | Wang Z J, Qin F H, Luo X S. Numerical investigation of effects of curvature and wettability of particles on heterogeneous condensation[J]. The Journal of Chemical Physics, 2018, 149(13): 134306. |
25 | Zandavi S H, Ward C A. Vapour adsorption kinetics: statistical rate theory and zeta adsorption isotherm approach[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25538-25545. |
26 | Wu C M, Zandavi S H, Ward C A. Prediction of the wetting condition from the Zeta adsorption isotherm[J]. Physical Chemistry Chemical Physics, 2014, 16(46): 25564-25572. |
27 | Ward C A, Wu J Y. Effect of adsorption on the surface tensions of solid-fluid interfaces[J]. The Journal of Physical Chemistry B, 2007, 111(14): 3685-3694. |
28 | Wongkoblap A, Do D D. Adsorption of water in finite length carbon slit pore: comparison between computer simulation and experiment[J]. The Journal of Physical Chemistry B, 2007, 111(50): 13949-13956. |
29 | Zandavi S H, Ward C A. Characterization of the pore structure and surface properties of shale using the zeta adsorption isotherm approach[J]. Energy & Fuels, 2015, 29(5): 3004-3010. |
30 | Zargarzadeh L, Elliott J A W. Thermodynamics of surface nanobubbles[J]. Langmuir, 2016, 32(43): 11309-11320. |
31 | Ghaffarizadeh S A, Zandavi S H, Ward C A. Specific surface area from nitrogen adsorption data at 77 K using the zeta adsorption isotherm [J]. The Journal of Physical Chemistry C, 2017, 121(41): 23011-23016. |
32 | Wei X, Wu C M, Li Y R. Molecular insight into the formation of adsorption clusters based on the zeta isotherm[J]. Physical Chemistry Chemical Physics, 2020, 22(18): 10123-10131. |
33 | 汪志诚. 热力学·统计物理[M]. 5版. 北京: 高等教育出版社, 2013. |
Wang Z C. Thermodynamics:Statistical Physics [M]. 5th ed. Beijing: Higher Education Press, 2013. | |
34 | Argyris D, Tummala N R, Striolo A, et al. Molecular structure and dynamics in thin water films at the silica and graphite surfaces[J]. The Journal of Physical Chemistry C, 2008, 112(35): 13587. |
35 | 苏长荪. 高等工程热力学[M]. 北京: 高等教育出版社, 1987. |
Su C S. Advanced Engineering Thermodynamics [M]. Beijing: Higher Education Press, 1987. | |
36 | Ghasemi H, Ward C A. Surface tension of solids in the absence of adsorption[J]. The Journal of Physical Chemistry B, 2009, 113(38): 12632-12634. |
37 | Barton S S, Evans M J B, MacDonald J A F. Adsorption of water vapor on nonporous carbon[J]. Langmuir, 1994, 10(11): 4250-4252. |
[1] | 李正涛, 袁志杰, 贺高红, 姜晓滨. 疏水界面上的NaCl液滴蒸发过程内环流调控机制研究[J]. 化工学报, 2023, 74(5): 1904-1913. |
[2] | 张瑾渊, 徐娜, 贺文云, 吕耀东, 刘子璐, 张兴芳. 消防用PEO/OTAC/NaSal减阻体系的介观分子动力学分析[J]. 化工学报, 2022, 73(3): 1157-1165. |
[3] | 杨振, 姚元鹏, 李昀, 吴慧英. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101. |
[4] | 李英杰, 李奇侠, 王宏, 朱恂, 陈蓉, 廖强, 丁玉栋. 波浪结构超疏水表面对液滴聚并弹跳的影响[J]. 化工学报, 2022, 73(10): 4345-4354. |
[5] | 彭启, 贾力, 丁艺, 张永欣, 党超, 银了飞. 受限微结构对低表面张力液滴合并弹跳的影响[J]. 化工学报, 2021, 72(4): 1920-1929. |
[6] | 李春曦, 庄立宇, 施智贤, 叶学民. 不混溶液体表面上蒸发液滴的动力学特性[J]. 化工学报, 2020, 71(8): 3500-3509. |
[7] | 李琳, 夏淑倩, 商巧燕, 马沛生. CO2-环烷烃/芳香烃界面张力的测定与估算[J]. 化工学报, 2020, 71(1): 254-264. |
[8] | 闫磊, 陈思宇, 肖美良子, 丁伟. 煤制烯烃基长链烷基二甲苯合成研究[J]. 化工学报, 2019, 70(S1): 235-241. |
[9] | 叶学民, 李明兰, 张湘珊, 杨少东, 李春曦. 平板浸涂过程中的液膜排液影响因素[J]. 化工学报, 2019, 70(6): 2164-2173. |
[10] | 吴雨馨, 唐巧, 张姬一哲, 王运东. 混合澄清槽混合与澄清特性的规律研究[J]. 化工学报, 2019, 70(10): 3932-3940. |
[11] | 纪玉龙, 庾春荣, 张庆振, 孙达. 表面浸润程度对脉动热管传热性能的影响[J]. 化工学报, 2017, 68(S1): 141-149. |
[12] | 季佳圆, 赵伶玲, 李偲宇. 温度及压强对CO2-盐水系统界面张力的影响[J]. 化工学报, 2017, 68(7): 2880-2885. |
[13] | 张国堤, 李富祥, 陈剑虹, 曹睿, 林巧力. Wood液态合金在NaOH溶液中的电化学反应及表面张力变化行为[J]. 化工学报, 2017, 68(3): 1122-1128. |
[14] | 喻红梅, 华平, 刘骏峰, 李建华, 朱成龙, 朱国华, 祝霞. 连接基长度对GSS/TX-100复配体系表面性质的影响[J]. 化工学报, 2017, 68(1): 238-243. |
[15] | 季佳圆, 赵伶玲, 李偲宇. 离子对CO2-盐水系统界面特性的影响[J]. 化工学报, 2017, 68(1): 223-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||