1 |
Boreyko J B, Chen C H. Self-propelled dropwise condensate on superhydrophobic surfaces[J]. Physical Review Letters, 2009, 103(18): 184501.
|
2 |
王凯, 王德武, 侯得印, 等. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能[J]. 化工学报, 2019, 70(1): 298-308.
|
|
Wang K, Wang D W, Hou D Y, et al. Fabrication of PVDF-SiO2/PVSQ superhydrophobic compositemembrane via self-assembly with anti-fouling property for membrane distillation[J]. CIESC Journal, 2019, 70(1): 298-308.
|
3 |
丁云飞, 殷帅, 廖云丹, 等. 纳微结构疏水表面结霜过程及抑霜特性[J]. 化工学报, 2012, 63(10): 3213-3219.
|
|
Ding Y F, Yin S, Liao Y D, et al. Frosting mechanism and suppression on nano/micro-structured hydrophobic surfaces[J]. CIESC Journal, 2012, 63(10): 3213-3219.
|
4 |
柴叶霞, 陈华艳, 贾悦, 等. PVDF中空纤维换热管超疏水表面强化蒸气滴状冷凝传热[J]. 化工学报, 2019, 70(4): 1331-1339.
|
|
Chai Y X, Chen H Y, Jia Y, et al. Enhancement on steam dropwise condensation heat transfer with superhydrophobic surfaces of PVDF hollow fiber heat exchange tubes[J]. CIESC Journal, 2019, 70(4): 1331-1339.
|
5 |
唐桂华, 胡浩威, 牛东, 等. 蒸汽珠状冷凝传热的研究进展[J]. 科学通报, 2020, 65(17): 1653-1676.
|
|
Tang G H, Hu H W, Niu D, et al. Advances in vapor dropwise condensation heat transfer[J]. Chinese Science Bulletin, 2020, 65(17): 1653-1676.
|
6 |
Peng Q, Jia L, Guo J, et al. Forced jumping and coalescence-induced sweeping enhanced the dropwise condensation on hierarchically microgrooved superhydrophobic surface[J]. Applied Physics Letters, 2019, 114(13): 133106.
|
7 |
Hou K Y, Li X Y, Li Q, et al. Tunable wetting patterns on superhydrophilic/superhydrophobic hybrid surfaces for enhanced dew-harvesting efficacy[J]. Advanced Materials Interfaces, 2020, 7(2): 1901683.
|
8 |
刘天庆, 孙玮, 孙相彧, 等. 超疏水表面上冷凝液滴发生弹跳的机制与条件分析[J]. 物理化学学报, 2012, 28(5): 1206-1212.
|
|
Liu T Q, Sun W, Sun X Y, et al. Mechanism and condition analysis of condensed drop jumping on super-hydrophobic surfaces[J]. Acta Physico-Chimica Sinica, 2012, 28(5): 1206-1212.
|
9 |
王四芳, 兰忠, 彭本利, 等. 超疏水表面液滴合并诱导弹跳现象分析[J]. 化工学报, 2012, 63: 17-22.
|
|
Wang S F, Lan Z, Peng B L, et al. Characteristics of droplet coalescence and self-propelling on superhydrophobic surface[J]. CIESC Journal, 2012, 63: 17-22.
|
10 |
彭本利, 兰忠, 徐威, 等. 液滴合并LB模拟及液滴弹跳的理论分析[J]. 工程热物理学报, 2013, 34(9): 1731-1734.
|
|
Peng B L, Lan Z, Xu W, et al. Droplet coalescence simulation by lattice boltzmann method and theoretical analysis of droplet jumping phenomenon[J]. Journal of Engineering Thermophysics, 2013, 34(9): 1731-1734.
|
11 |
Enright R, Miljkovic N, Sprittles J, et al. How coalescing droplets jump[J]. ACS Nano, 2014, 8(10): 10352-10362.
|
12 |
Liu F J, Ghigliotti G, Feng J J, et al. Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces[J]. Journal of Fluid Mechanics, 2014, 752: 39-65.
|
13 |
成赛凤, 梁彩华, 赵伟, 等. 疏水表面液滴合并弹跳过程的数值模拟[J]. 化工学报, 2018, 69: 153-160.
|
|
Cheng S F, Liang C H, Zhao W, et al. Numerical simulation of droplet coalescence and bounce process on hydrophobic surfaces[J]. CIESC Journal, 2018, 69: 153-160.
|
14 |
王凯, 梁倩卿, 姜睿, 等. 凸起微结构对超疏水表面液滴弹跳强化机理的研究[J]. 高校化学工程学报, 2017, 31(3): 663-668.
|
|
Wang K, Liang Q Q, Jiang R, et al. Mechanism of droplet jumping enhancement by raised structures on superhydrophobic surfaces[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3): 663-668.
|
15 |
Lu D Q, Zhao M R, Zhang H L, et al. Self-enhancement of coalescence-induced droplet jumping on superhydrophobic surfaces with an asymmetric V-groove[J]. Langmuir, 2020, 36(19): 5444-5453.
|
16 |
Wen R F, Xu S S, Zhao D L, et al. Hierarchical superhydrophobic surfaces with micropatterned nanowire arrays for high-efficiency jumping droplet condensation[J]. ACS Applied Materials & Interfaces, 2017, 9(51): 44911-44921.
|
17 |
Han T, Kwak H J, Kim J H, et al. Nanograssed zigzag structures to promote coalescence-induced droplet jumping[J]. Langmuir, 2019, 35(27): 9093-9099.
|
18 |
Aili A, Li H X, Alhosani M H, et al. Unidirectional fast growth and forced jumping of stretched droplets on nanostructured microporous surfaces[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21776-21786.
|
19 |
Vahabi H, Wang W, Mabry J M, et al. Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture[J]. Science Advances, 2018, 4(11): eaau3488.
|
20 |
Yan X, Zhang L C, Sett S, et al. Droplet jumping: effects of droplet size, surface structure, pinning, and liquid properties[J]. ACS Nano, 2019, 13(2): 1309-1323.
|
21 |
党超, 贾力, 杞卓琳, 等. 通道结构强化微通道流动沸腾流动与传热[J]. 科学通报, 2019, 64(23): 2450-2462.
|
|
Dang C, Jia L, Qi Z L, et al. Flow and heat transfer characteristics of microchannel flow boiling enhancement with channel configurations[J]. Chinese Science Bulletin, 2019, 64(23): 2450-2462.
|
22 |
An Z J, Jia L, Ding Y, et al. A review on lithium-ion power battery thermal management technologies and thermal safety[J]. Journal of Thermal Science, 2017, 26(5): 391-412.
|
23 |
Nam Y, Ju Y S. A comparative study of the morphology and wetting characteristics of micro/nanostructured Cu surfaces for phase change heat transfer applications[J]. Journal of Adhesion Science and Technology, 2013, 27(20): 2163-2176.
|
24 |
Jafari R, Farzaneh M. Development a simple method to create the superhydrophobic composite coatings[J]. Journal of Composite Materials, 2013, 47(25): 3125-3129.
|
25 |
Vazquez G, Alvarez E, Navaza J M. Surface tension of alcohol water + water from 20 to 50℃ [J]. Journal of Chemical & Engineering Data, 1995, 40(3): 611-614.
|
26 |
Dizechi M, Marschall E. Viscosity of some binary and ternary liquid mixtures[J]. Journal of Chemical & Engineering Data, 1982, 27(3): 358-363.
|
27 |
Miljkovic N, Enright R, Wang E N. Modeling and optimization of superhydrophobic condensation[J]. Journal of Heat Transfer, 2013, 135(11): 111004.
|
28 |
Peng Q, Yan X, Li J Q, et al. Breaking droplet jumping energy conversion limits with superhydrophobic microgrooves[J]. Langmuir, 2020, 36(32): 9510-9522.
|
29 |
Zhang K, Liu F, Williams A J, et al. Self-propelled droplet removal from hydrophobic fiber-based coalescers[J]. Physical Review Letters, 2015, 115(7): 074502.
|
30 |
Qu X P, Boreyko J B, Liu F J, et al. Self-propelled sweeping removal of dropwise condensate[J]. Applied Physics Letters, 2015, 106(22): 221601.
|