| [1] |
Chang M C Y, Eachus R A, Trieu W, et al. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s[J]. Nature Chemical Biology, 2007, 3(5): 274-277.
|
| [2] |
Ajikumar P K, Tyo K, Carlsen S, et al. Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms[J]. Molecular Pharmaceutics, 2008, 5(2): 167-190.
|
| [3] |
Zhang G, Zhang W S, Wang X Y, et al. Ni-catalyzed unnatural prenylation and cyclic monoterpenation of heteroarenes with isoprene[J]. Chinese Journal of Catalysis, 2023, 49: 123-131.
|
| [4] |
Leber A P. Overview of isoprene monomer and polyisoprene production processes[J]. Chemico-Biological Interactions, 2001, 135: 169-173.
|
| [5] |
Cruz Morales J A, Gutiérrez Flores C, Zárate Saldaña D, et al. Synthetic polyisoprene rubber as a mimic of natural rubber: recent advances on synthesis, nanocomposites, and applications[J]. Polymers, 2023, 15(20): 4074.
|
| [6] |
Sharma R K, Mohanty S, Gupta V. Advances in butyl rubber synthesis via cationic polymerization: an overview[J]. Polymer International, 2021, 70(9): 1165-1175.
|
| [7] |
Wang P, Liu J L, Chi C Y, et al. Solvent-free synthesis, plasticization and compatibilization of cardanol grafted onto liquid isoprene rubber[J]. Composites Science and Technology, 2021, 215: 109027.
|
| [8] |
Sharkey T D, Wiberley A E, Donohue A R. Isoprene emission from plants: why and how[J]. Annals of Botany, 2008, 101(1): 5-18.
|
| [9] |
Monson R K, Jones R T, Rosenstiel T N, et al. Why only some plants emit isoprene[J]. Plant, Cell & Environment, 2013, 36(3): 503-516.
|
| [10] |
Melis A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency[J]. Plant Science, 2009, 177(4): 272-280.
|
| [11] |
岳鹏. 异戊二烯的生产技术及市场分析[J]. 炼油与化工, 2006, 17(2): 3-5.
|
|
Yue P. Production technology and market analysis of isoprene[J]. Refining and Chemical Industry, 2006, 17(2): 3-5.
|
| [12] |
Whited G M, Feher F J, Benko D A, et al. Technology update: development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering[J]. Industrial Biotechnology, 2010, 6(3): 152-163.
|
| [13] |
McGenity T J, Crombie A T, Colin Murrell J. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth[J]. The ISME Journal, 2018, 12(4): 931-941.
|
| [14] |
Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria)[J]. BioEnergy Research, 2012, 5(4): 814-828.
|
| [15] |
Kuzuyama T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66(8): 1619-1627.
|
| [16] |
Hoeffler J F, Hemmerlin A, Grosdemange-Billiard C, et al. Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate[J]. Biochemical Journal, 2002, 366(2): 573-583.
|
| [17] |
Schnitzler J P, Zimmer I, Bachl A, et al. Biochemical properties of isoprene synthase in poplar (Populus × canescens)[J]. Planta, 2005, 222(5): 777-786.
|
| [18] |
Garcia-Ojalvo J, Khalil A S, McCarthy J. Biological insights from synthetic biology[J]. Integrative Biology, 2016, 8(4): 380-382.
|
| [19] |
Yang J M, Zhao G, Sun Y Z, et al. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli [J]. Bioresource Technology, 2012, 104: 642-647.
|
| [20] |
Zhao Y R, Yang J M, Qin B, et al. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway[J]. Applied Microbiology and Biotechnology, 2011, 90(6): 1915-1922.
|
| [21] |
Shaikh K M, Odaneth A A. Metabolic engineering of Yarrowia lipolytica for the production of isoprene[J]. Biotechnology Progress, 2021, 37(6): e3201.
|
| [22] |
Yang C, Gao X, Jiang Y, et al. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli [J]. Metabolic Engineering, 2016, 37: 79-91.
|
| [23] |
Dugar D, Stephanopoulos G. Relative potential of biosynthetic pathways for biofuels and bio-based products[J]. Nature Biotechnology, 2011, 29(12): 1074-1078.
|
| [24] |
Reddington S C, Howarth M. Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher[J]. Current Opinion in Chemical Biology, 2015, 29: 94-99.
|
| [25] |
Ko H J, Song H, Choi I G. Development of a novel cell surface attachment system to display multi-protein complex using the cohesin-dockerin binding pair[J]. Journal of Microbiology and Biotechnology, 2021, 31(8): 1183-1189.
|
| [26] |
Hanreich S, Bonandi E, Drienovská I. Design of artificial enzymes: insights into protein scaffolds[J]. Chembiochem, 2023, 24(6): e202200566.
|
| [27] |
Argos P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion[J]. Journal of Molecular Biology, 1990, 211(4): 943-958.
|
| [28] |
Wang Y C, Yu O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells[J]. Journal of Biotechnology, 2012, 157(1): 258-260.
|
| [29] |
Zhao S J, Jones J A, Lachance D M, et al. Improvement of catechin production in Escherichia coli through combinatorial metabolic engineering[J]. Metabolic Engineering, 2015, 28: 43-53.
|
| [30] |
Sasaki K, Ohara K, Yazaki K. Gene expression and characterization of isoprene synthase from Populus alba [J]. FEBS Letters, 2005, 579(11): 2514-2518.
|
| [31] |
Bei C, Zhu J H, Culviner P H, et al. Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis [J]. Nature Communications, 2024, 15(1): 3088.
|
| [32] |
Dueber J E, Wu G C, Malmirchegini G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8): 753-759.
|
| [33] |
Isar J, Jain D, Joshi H, et al. MICROBIAL isoprene production: an overview[J]. World Journal of Microbiology and Biotechnology, 2022, 38(7): 122.
|