[1] |
Lo T M, Teo W S, Ling H, Chen B, Kang A, Chang M W. Microbial engineering strategies to improve cell viability for biochemical production [J]. Biotechnol. Adv., 2013, 31: 903-914.
|
[2] |
Yadav V G, De Mey M, Lim C G, Ajikumar P K, Stephanopoulos G. The future of metabolic engineering and synthetic biology: towards a systematic practice [J]. Metab. Eng., 2012, 14: 233-241.
|
[3] |
Inokuma K, Liao J C, Okamoto M, Hanai T. Improvement of isopropanol production by metabolically engineered Escherichia coli using gas stripping [J]. J. Biosci. Bioeng., 2010, 110: 696-701.
|
[4] |
Becker J, Zelder O, Hfifner S, Schröder H, Wittmann C. From zero to hero—design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production [J]. Metab. Eng., 2011, 13: 159-168.
|
[5] |
Ajikumar P K, Xiao W H, Tyo K E J, Wang Y, Simeon F, Leonard E, Mucha O, Phon T H, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli [J]. Science, 2010, 330: 70-74.
|
[6] |
Xu P, Gu Q, Wang W, Wong L, Bower A G, Collins C H, Koffas M A. Modular optimization of multi-gene pathways for fatty acids production in E. coli [J]. Nat. Commun., 2013, 4: 1409.
|
[7] |
Liu Y, Zhu Y, Li J, Shin H D, Chen R R, Du G, Liu L, Chen J. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production [J]. Metab. Eng., 2014, 23: 42-52.
|
[8] |
Lin Y, Sun X, Yuan Q, Yan Y. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli [J]. Metab. Eng., 2014, 23: 62-69.
|
[9] |
Wu J, Liu P, Fan Y, Bao H, Du G, Zhou J, Chen J. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine [J]. J. Biotechnol., 2013, 167: 404-411.
|
[10] |
Wu J, Du G, Zhou J, Chen J. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy [J]. Metab. Eng., 2013, 16: 48-55.
|
[11] |
Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y. Engineering central metabolic modules of Escherichia coli for improving beta-carotene production [J]. Metab. Eng., 2013, 17: 42-50.
|
[12] |
Dai Zhubo, Liu Yi, Huang Luqi, Zhang Xueli. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2012, 109(11): 2845-2853.
|
[13] |
Miles E W. Tryptophan synthase: a multienzyme complex with an intramolecular tunnel [J]. Chem. Rec., 2001, 1: 140-151.
|
[14] |
Smith S, Tsai S C. The type Ⅰ fatty acid and polyketide synthases: a tale of two megasynthases [J]. Nat. Prod. Rep., 2007, 24: 1041-1072.
|
[15] |
Dueber J E, Wu G C, Malmirchegini G R, Moon T S, Petzold C J, Ullal A V, Prather K L, Keasling J D. Synthetic protein scaffolds provide modular control over metabolic flux [J]. Nat. Biotechnol., 2009, 27: 753-759.
|
[16] |
Moon T S, Dueber J E, Shiue E, Prather K L J. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli [J]. Metab. Eng., 2010, 12: 298-305.
|
[17] |
Wilner O I, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I. Enzyme cascades activated on topologically programmed DNA scaffolds [J]. Nat. Nanotechnol., 2009, 4: 249-254.
|
[18] |
Delebecque C J, Lindner A B, Silver P A, Aldaye F A. Organization of intracellular reactions with rationally designed RNA assemblies [J]. Science, 2011, 333: 470-474.
|
[19] |
Zhou L, Zuo Z R, Chen X Z, Niu D D, Tian K M, Prior B A, Shen W, Shi G Y, Singh S, Wang Z X. Evaluation of genetic manipulation strategies on D-lactate production by Escherichia coli [J]. Curr. Microbiol., 2011, 62: 981-989.
|
[20] |
Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D, Osterhout R E, Stephen R, Estadilla J, Teisan S, Schreyer H B, Andrae S, Yang T H, Lee S Y, Burk M J, Van Dien S. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol [J]. Nat. Chem. Biol., 2011, 7: 445-452.
|
[21] |
Williams T C, Averesch N J H, Winter G, Plan M R, Vickers C E, Nielsen L K, Krömer J O. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae [J]. Metab. Eng., 2015, 29: 124-134.
|
[22] |
Zhou L, Niu D D, Tian K M, Chen X Z, Prior B A, Shen W, Shi G Y, Singh S, Wang Z X. Genetically switched D-lactate production in Escherichia coli [J]. Metab. Eng., 2012, 14: 560-568.
|
[23] |
Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch [J]. Metab. Eng., 2014, 23: 175-184.
|
[24] |
Farmer W R, Liao J C. Improving lycopene production in Escherichia coli by engineering metabolic control [J]. Nat. Biotechnol., 2000, 18: 533-537.
|
[25] |
Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control [J]. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: 11299-11304.
|
[26] |
Urnov F D, Rebar E J, Holmes M C, Zhang H S, Gregory P D. Genome editing with engineered zinc finger nucleases [J]. Nat. Rev. Genet., 2010, 11: 636-646.
|
[27] |
Joung J K, Sander J D. TALENs: a widely applicable technology for targeted genome editing [J]. Nat. Rev. Mol. Cell Biol., 2013, 14: 49-55.
|
[28] |
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation [J]. Annu. Rev. Genet., 2011, 45: 273-297.
|
[29] |
DiCarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems [J]. Nucleic Acids Res., 2013, 41: 4336-4343.
|
[30] |
Jiang W, Bikard D, Cox D, Zhang F, Marraffini L A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J]. Nat. Biotech., 2013, 31: 233-239.
|
[31] |
Jako?iūnas T, Bonde I, Herrgård M, Harrison S J, Kristensen M, Pedersen L E, Jensen M K, Keasling J D. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae [J]. Metab. Eng., 2015, 28: 213-222.
|
[32] |
Qi Lei S, Larson Matthew H, Gilbert Luke A, Doudna Jennifer A, Weissman Jonathan S, Arkin Adam P, Lim Wendell A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression [J]. Cell, 152: 1173-1183.
|
[33] |
Cheng A W, Wang H, Yang H, Shi L, Katz Y, Theunissen T W, Rangarajan S, Shivalila C S, Dadon D B, Jaenisch R. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system [J]. Cell Res., 2013, 23: 1163-1171.
|
[34] |
Gilbert L A, Larson M H, Morsut L, Liu Z, Brar G A, Torres S E, Stern-Ginossar N, Brandman O, Whitehead E H, Doudna J A, Lim W A, Weissman J S, Qi L S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes [J]. Cell, 2013, 154: 442-451.
|