化工学报 ›› 2025, Vol. 76 ›› Issue (S1): 133-139.DOI: 10.11949/0438-1157.20241375
• 流体力学与传递现象 • 上一篇
吴馨(
), 龚建英(
), 李祥宇, 王宇涛, 杨小龙, 蒋震
收稿日期:2024-11-28
修回日期:2025-01-08
出版日期:2025-06-25
发布日期:2025-06-26
通讯作者:
龚建英
作者简介:吴馨(1996—),女,博士研究生,wx3119103247@stu.xjtu.edu.cn
基金资助:
Xin WU(
), Jianying GONG(
), Xiangyu LI, Yutao WANG, Xiaolong YANG, Zhen JIANG
Received:2024-11-28
Revised:2025-01-08
Online:2025-06-25
Published:2025-06-26
Contact:
Jianying GONG
摘要:
提出一种利用超声波协同疏水表面驱动液滴的抑霜策略,并对超声波激励下铝板表面液滴的输运行为进行了实验研究,分析了超声功率、液滴体积及表面疏水性对液滴直径铺展率、平均运动速率的影响。实验结果表明,液滴在超声波作用下经历了铺展变形―运动―雾化―蒸发四个阶段;其次,液滴直径铺展率随超声功率的增大而增大,但液滴体积对直径铺展率没有显著影响;液滴平均运动速率均与超声功率及液滴体积呈正相关;与裸铝表面相比,疏水表面的液滴直径铺展率增加到1.15倍左右,平均运动速度最大可增加至6倍左右。
中图分类号:
吴馨, 龚建英, 李祥宇, 王宇涛, 杨小龙, 蒋震. 超声波激励疏水表面液滴运动的实验研究[J]. 化工学报, 2025, 76(S1): 133-139.
Xin WU, Jianying GONG, Xiangyu LI, Yutao WANG, Xiaolong YANG, Zhen JIANG. Experimental study on the droplet motion on the hydrophobic surface under ultrasonic excitation[J]. CIESC Journal, 2025, 76(S1): 133-139.
| 实验参数 | 仪器 | 量程 | 误差 |
|---|---|---|---|
| 液滴体积/μl | 微量移液器 | 5~50 | ±0.1 |
| 静态接触角/(°) | 接触角测量仪 | 0~180 | ±0.1 |
| 超声波功率/ W | 超声波发生器 | 0~60 | ±0.6 |
表1 实验参数误差分析
Table 1 Error analysis of experimental parameters
| 实验参数 | 仪器 | 量程 | 误差 |
|---|---|---|---|
| 液滴体积/μl | 微量移液器 | 5~50 | ±0.1 |
| 静态接触角/(°) | 接触角测量仪 | 0~180 | ±0.1 |
| 超声波功率/ W | 超声波发生器 | 0~60 | ±0.6 |
图6 不同超声功率及不同液滴体积下裸铝表面与疏水表面液滴的直径铺展率
Fig.6 Diameter spreading rate of droplets on bare aluminum surface and hydrophobic surface under different ultrasonic power and different droplet volume
图7 不同超声功率及不同液滴体积下裸铝表面与疏水表面液滴的平均运动速率
Fig.7 Average movement velocity of droplets on bare aluminum surface and hydrophobic surface under different ultrasonic power and different droplet volume
| 1 | Emery A F, Siegel B L. Experimental measurements of the effects of frost formation on heat exchanger performance[J]. Engineering, Environmental Science, 1990, 139: 1-7. |
| 2 | 苏伟, 芦志飞, 张小松. 竖直超疏水翅片间霜层动态生长特性[J]. 化工学报, 2021, 72(S1): 244-256. |
| Su W, Lu Z F, Zhang X S. Frost growth dynamics on vertical superhydrophobic fins[J]. CIESC Journal, 2021, 72(S1): 244-256. | |
| 3 | 张鲁梦, 郭宪民, 薛杰. 翅片管换热器表面霜层生长特性的实验研究[J]. 化工学报, 2018, 69(S2): 186-192. |
| Zhang L M, Guo X M, Xue J. Experimental study of frost growth characteristics on surface of finned-tube heat exchangers[J]. CIESC Journal, 2018, 69(S2): 186-192. | |
| 4 | 侯建强, 龚建英, 李真. 铜表面液滴冻结的实验研究[J]. 西安交通大学学报, 2019, 53(5): 30-36. |
| Hou J Q, Gong J Y, Li Z. Experimental study of droplet freezing on copper surface[J]. Journal of Xi'an Jiaotong University, 2019, 53(5): 30-36. | |
| 5 | 张志, 贾少波, 谢伟, 等. 蒸发器盘管结霜特性的实验研究[J]. 制冷技术, 2015, 35(2): 29-33. |
| Zhang Z, Jia S B, Xie W, et al. Experimental study of frost formation characteristics on evaporator coil[J]. Chinese Journal of Refrigeration Technology, 2015, 35(2): 29-33. | |
| 6 | Barelli L, Bidini G, Moraglia S. Development of an innovative defrosting system for commercial chiller evaporators through piezoelectric elements application[C]//ASME 2004 International Mechanical Engineering Congress and Exposition. Anaheim, California, USA, 2008: 21-26. |
| 7 | 谭海辉, 陶唐飞, 徐光华, 等. 翅片管式蒸发器超声波除霜理论与技术研究[J]. 西安交通大学学报, 2015, 49(9): 105-113. |
| Tan H H, Tao T F, Xu G H, et al. Ultrasonic defrosting theory and technology for finned-tube evaporator[J]. Journal of Xi'an Jiaotong University, 2015, 49(9): 105-113. | |
| 8 | 胡斌, 王如竹, 骆名文, 等. 空气源热泵新型除霜技术及智能除霜策略[J]. 制冷技术, 2018, 38(5): 1-6. |
| Hu B, Wang R Z, Luo M W, et al. Innovative defrosting technologies and smart control strategies of air-source heat pumps[J]. Chinese Journal of Refrigeration Technology, 2018, 38(5): 1-6. | |
| 9 | 曹小林, 曹双俊, 段飞, 等. 空气源热泵除霜问题研究现状与展望[J]. 流体机械, 2011, 39(4): 75-79. |
| Cao X L, Cao S J, Duan F, et al. Current situation and development prospect of air source heat pump defrosting research[J]. Fluid Machinery, 2011, 39(4): 75-79. | |
| 10 | 曲明璐, 张娆, 张童瑶, 等. 复叠式空气源热泵相变蓄能除霜能耗实验研究[J]. 制冷学报, 2019, 40(4): 23-28. |
| Qu M L, Zhang R, Zhang T Y, et al. Experimental study on the defrosting energy consumption of cascade air-source heat pump with phase-change energy storage for defrosting[J]. Journal of Refrigeration, 2019, 40(4): 23-28. | |
| 11 | 汪谦旭, 刘益才, 梁恒, 等. 融霜下落水对换热器除霜性能的影响[J]. 化工学报, 2021, 72(S1): 356-361. |
| Wang Q X, Liu Y C, Liang H, et al. Impact of defrost falling water on defrost performance of heat exchanger[J]. CIESC Journal, 2021, 72(S1): 356-361. | |
| 12 | 王驿凯, 叶祖樑, 潘祖栋, 等. 跨临界CO2热泵的热气旁通除霜方法及除霜时间分析[J]. 上海交通大学学报, 2019, 53(11): 1367-1374. |
| Wang Y K, Ye Z L, Pan Z D, et al. Hot-gas bypass defrosting method and analysis of defrosting time for transcritical CO2 heat pump[J]. Journal of Shanghai Jiao Tong University, 2019, 53(11): 1367-1374. | |
| 13 | 李刚, 田小亮. 空气源热泵系统结霜及除霜实验研究[J]. 科学技术创新, 2020(12): 7-9. |
| Li G, Tian X L. Experimental study on frosting and defrosting of air source heat pump system[J]. Scientific and Technological Innovation, 2020(12): 7-9. | |
| 14 | 张新华, 刘中良, 王皆腾, 等. 电场作用下竖直板表面特性对霜层生长的影响[J]. 制冷学报, 2006(3): 54-58. |
| Zhang X H, Liu Z L, Wang J T, et al. Influences of surface characteristics on frost formation on vertical cold plate with electric field[J]. Journal of Refrigeration, 2006(3): 54-58. | |
| 15 | Joppolo C M, Molinaroli L, De Antonellis S, et al. Experimental analysis of frost formation with the presence of an electric field on fin and tube evaporator[J]. International Journal of Refrigeration, 2012, 35(2): 468-474. |
| 16 | 勾昱君, 刘中良, 刘耀民, 等. 磁场对冷表面上结霜过程影响的实验研究[J]. 工程热物理学报, 2009, 30(3): 465-467. |
| Gou Y J, Liu Z L, Liu Y M, et al. The study of frost formation under magnetic field[J]. Journal of Engineering Thermophysics, 2009, 30(3): 465-467. | |
| 17 | Cheng C H, Shiu C C. Oscillation effects on frost formation and liquid droplet solidification on a cold plate in atmospheric air flow[J]. International Journal of Refrigeration, 2003, 26(1): 69-78. |
| 18 | Adachi K, Saiki K, Sato H. Suppression of frosting on a metal surface using ultrasonic vibrations[C]//1998 IEEE Ultrasonics Symposium Proceedings. IEEE, 1998: 759-762. |
| 19 | Adachi K, Saiki K, Sato H, et al. Ultrasonic frost suppression[J]. Japanese Journal of Applied Physics, 2003, 42(2A): 682-685. |
| 20 | 宋立超, 秦妍, 李维仲. 磁场作用下不同润湿性表面结霜实验研究[J]. 化工学报, 2020, 71(12): 5521-5529. |
| Song L C, Qin Y, Li W Z. Experimental study of frosting on different wettability surfaces under magnetic field[J]. CIESC Journal, 2020, 71(12): 5521-5529. | |
| 21 | Chen X, Lal A. Surface liquid droplet motion on silicon ultrasonic horn actuators[C]//IEEE Ultrasonics Symposium. IEEE, 2005: 1032-1035. |
| 22 | Nayak P P, Kar D P, Bhuyan S. Droplets merging through wireless ultrasonic actuation[J]. Ultrasonics, 2016, 64: 83-88. |
| 23 | 丘华川, 姜立标. 超声行波驱动的玻璃表面液滴运动数值模拟[J]. 北京航空航天大学学报, 2017, 43(5): 908-917. |
| Qiu H C, Jiang L B. Numerical simulation of droplet motion on glass surface driven by ultrasonic travelling wave[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(5): 908-917. | |
| 24 | 姜立标, 黄树程, 凌诗韵, 等. 基于微流驱动效应的汽车前风挡除水机制研究[J]. 机床与液压, 2016, 44(23): 118-123. |
| Jiang L B, Huang S C, Ling S Y, et al. Mechanism research of vehicle windshield rainwater-removing based on microflow drive technique[J]. Machine Tool & Hydraulics, 2016, 44(23): 118-123. | |
| 25 | 陈书聪. 超声波液滴驱动技术在汽车风挡玻璃上应用的可行性[J]. 企业导报, 2016(7): 38, 54. |
| Chen S C. Feasibility of applying ultrasonic droplet driving technology to automotive windshield glass[J]. Guide to Business, 2016(7): 38, 54. | |
| 26 | 吴晓敏, 褚福强, 陈永根. 疏水表面结霜初期液滴生长的理论分析[J]. 化工学报, 2015, 66(S1): 60-64. |
| Wu X M, Chu F Q, Chen Y G. Theoretical analysis of droplets growth in early stage of frosting on hydrophobic surfaces[J]. CIESC Journal, 2015, 66(S1): 60-64. | |
| 27 | Feng L B, Yan Z N, Shi X T, et al. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys[J]. Applied Physics A, 2018, 124(2): 142. |
| 28 | Jiang J, Lu G Y, Tang G H. Inhibition of surface ice nucleation by combination of superhydrophobic coating and alcohol spraying[J]. International Journal of Heat and Mass Transfer, 2019, 134: 628-633. |
| 29 | 任政, 张兴群, 张蓓乐, 等. -60℃水平圆管表面结霜特性的实验研究[J]. 西安交通大学学报, 2019, 53(7): 78-83, 135. |
| Ren Z, Zhang X Q, Zhang B L, et al. Experimental study on the frosting behavior of horizontal circular tube surface at -60℃[J]. Journal of Xi'an Jiaotong University, 2019, 53(7): 78-83, 135. | |
| 30 | Guo W B, Ma K, Wang Q, et al. The wetting of Pb droplet on the solid Al surface can be promoted by ultrasonic vibration— molecular dynamics simulation[J]. Materials Letters, 2020, 264: 127118. |
| 31 | 吴馨, 龚建英, 靳龙, 等. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
| Wu X, Gong J Y, Jin L, et al. Study on the transportation characteristics of droplets on the aluminium surface under ultrasonic excitation[J]. CIESC Journal, 2023, 74(S1): 104-112. |
| [1] | 于宏鑫, 王宁波, 郭焱华, 邵双全. 动态蓄冰系统的板式换热器流动换热模拟研究[J]. 化工学报, 2025, 76(S1): 106-113. |
| [2] | 孙浩然, 吴成云, 王艳蒙, 孙静楠, 胡仞与, 段钟弟. 热对流影响下液滴蒸发特性模型与实验研究[J]. 化工学报, 2025, 76(S1): 123-132. |
| [3] | 李家顺, 李旺, 秦祖赠, 苏通明, 谢新玲, 纪红兵. 聚酰亚胺增强木质纤维素纳米纤丝气凝胶制备及其油水分离性能研究[J]. 化工学报, 2025, 76(5): 2169-2185. |
| [4] | 赵英东, 姬沛君, 丛日尧, 付海超, 张家龙, 陈鹏忠, 彭孝军. 丙烯酸配位有机锡光刻胶的制备及高分辨光刻研究[J]. 化工学报, 2025, 76(4): 1820-1830. |
| [5] | 朱峰, 赵跃, 马凤翔, 刘伟. 改性UIO-66对SF6/N2混合气体及其分解产物的吸附特性[J]. 化工学报, 2025, 76(4): 1604-1616. |
| [6] | 刘璐, 万开, 王文玥, 王太, 汤建成, 王少恒. 基于氦膨胀制冷的正仲氢转化耦合流动换热研究[J]. 化工学报, 2025, 76(4): 1513-1522. |
| [7] | 刘润健, 林刚, 张玲, 徐栋, 李明, 韩路长. 考虑气泡表面变形影响的靠近-减薄过程耦合模型[J]. 化工学报, 2025, 76(4): 1504-1512. |
| [8] | 张忠州, 李怡霏, 陈双, 强军锋, 刘育红. 环氧基倍半硅氧烷修饰的联苯酚醛改性热塑性酚醛树脂性能[J]. 化工学报, 2025, 76(4): 1809-1819. |
| [9] | 马韶阳, 徐涵卓, 张亮亮, 孙宝昌, 邹海魁, 罗勇, 初广文. 液-液非均相反应与传递过程强化方法研究进展[J]. 化工学报, 2025, 76(4): 1391-1403. |
| [10] | 齐聪, 岳林菲. 交织网状小通道热沉的传热特性[J]. 化工学报, 2025, 76(4): 1534-1544. |
| [11] | 杨猛, 丁晓倩, 余涛, 刘畅, 汤成龙, 黄佐华. 甲烷/氧化亚氮绿色推进剂自着火特性实验及动力学[J]. 化工学报, 2025, 76(3): 1221-1229. |
| [12] | 李远华, 凌思棋, 封科军, 冯颖, 郭于菁, 谢世桓. 基于cMOFs的固定化脂肪酶微反应器的构筑及其扁桃酸催化应用[J]. 化工学报, 2025, 76(3): 1170-1179. |
| [13] | 贾文龙, 肖欢, 冷翔宇, 黄巧竞, 刘程玮, 吴瑕. 原油储罐重质沉积物超声波空化微射流清洗实验及数值模拟[J]. 化工学报, 2025, 76(3): 1288-1296. |
| [14] | 严珅, 席悦, 张盛宇, 陈晓东, 吴铎. 基于IGC-ZLC法测定有机蒸气在ZSM-5中的晶内扩散系数[J]. 化工学报, 2025, 76(3): 1076-1083. |
| [15] | 徐芳, 张锐, 崔达, 王擎. ReaxFF-MD揭示木质素热解反应机制的分子动力学研究[J]. 化工学报, 2025, 76(3): 1253-1263. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号