化工学报 ›› 2015, Vol. 66 ›› Issue (9): 3296-3304.DOI: 10.11949/j.issn.0438-1157.20150993
李彦, 徐铜文
收稿日期:
2015-06-26
修回日期:
2015-07-07
出版日期:
2015-09-05
发布日期:
2015-09-05
通讯作者:
徐铜文
基金资助:
国家自然科学基金项目(51273185);国家重点基础研究发展计划项目(2012CB932800)。
LI Yan, XU Tongwen
Received:
2015-06-26
Revised:
2015-07-07
Online:
2015-09-05
Published:
2015-09-05
Supported by:
supported by the National Natural Science Foundation of China (51273185) and the National Basic Research Program of China (2012CB932800).
摘要:
由于全钒氧化还原液流电池(VRB)具有大规模储能和稳定发电的特点,引起了国内外的广泛关注。离子交换膜(IEM)是VRB中的重要组件,它不仅要隔开阴阳极电解液,而且还要传输离子以构成闭合回路。对全钒液流电池用离子交换膜做了系统介绍。从离子交换膜的基本功能出发,详细阐述了近年来国内外全钒液流电池用离子交换膜的研究进展及目前面临的问题,并展望了全钒液流电池大规模商业化应用的前景。
中图分类号:
李彦, 徐铜文. 全钒液流电池用离子交换膜的研究进展[J]. 化工学报, 2015, 66(9): 3296-3304.
LI Yan, XU Tongwen. Development of ion exchange membrane for all-vanadium redox flow battery[J]. CIESC Journal, 2015, 66(9): 3296-3304.
[1] | Yang Zhenguo, Zhang Jianlu, Kintner-Meyer M C W, Lu Xiaochuan, Choi Daiwon, Lemmon J P, Liu Jun. Electrochemical energy storage for green grid [J]. Chemical Reviews, 2011, 111(5): 3577-3613. |
[2] | Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development [J]. Journal of the Electrochemical Society, 2011, 158(8): R55-R79. |
[3] | Huang Kelong, Li Xiaogang, Liu Suqin, Tan Ning, Chen Liquan. Research progress of vanadium redox flow battery for energy storage in China [J]. Renewable Energy, 2008, 33(2): 186-192. |
[4] | Weber A Z, Mench M M, Meyers J P, et al. Redox flow batteries: a review [J]. Journal of Applied Electrochemistry, 2011, 41(10): 1137-1164. |
[5] | Ding Cong, Zhang Huamin, Li Xiaofeng, Liu Tao, Xing Feng. Vanadium flow battery for energy storage: prospects and challenges [J]. The Journal of Physical Chemistry Letters, 2013, 4(8): 1281-1294. |
[6] | Kear G, Shah A A, Walsh F C. Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects [J]. International Journal of Energy Research, 2012, 36(11): 1105-1120. |
[7] | de Leon C P, Frías-Ferrer A, González-García J, et al. Redox flow cells for energy conversion [J]. Journal of Power Sources, 2006, 160(1): 716-732. |
[8] | Leung Puiki, Li Xiaohong, de León C P, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage [J]. RSC Advances, 2012, 2(27): 10125- 10156. |
[9] | Hwang G J, Ohya H. Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery [J]. Journal of Membrane Science, 1996, 120(1): 55-67. |
[10] | Kim Soowhan, Yan Jingling, Schwenzer B, Zhang Jianlu, Li Liyu, Yang Zhenguo, Hicker M A. Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries [J]. Electrochemistry Communications, 2010, 12(11): 1650-1653. |
[11] | Luo Qingtao, Zhang Huamin, Chen Jian, You Dongjiang, Sun Chenxi, Zhang Yu. Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery [J]. Journal of Membrane Science, 2008, 325(2): 553-558. |
[12] | Chen Dongyang, Wang Shuanjin, Xiao Min, Han Dongmei, Meng Yuezhong. Sulfonated poly(fluorenyl ether ketone) membrane with embedded silica rich layer and enhanced proton selectivity for vanadium redox flow battery [J]. Journal of Power Sources, 2010, 195(22): 7701-7708. |
[13] | Wei Wenping, Zhang Huamin, Li Xianfeng, Mai Zhensheng, Zhang Hongzhang. Poly(tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application [J]. Journal of Power Sources, 2012, 208(15): 421-425. |
[14] | Min-suk J J, Parrondo J, Arges C G, Vijay Ramani. Polysulfone- based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery [J]. Journal of Materials Chemistry A, 2013, 1(35): 10458-10464. |
[15] | Chen Dongyang, Hickner M A, Agar E, et al. Optimized anion exchange membranes for vanadium redox flow batteries [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7559-7566. |
[16] | Hwang G J, Ohya H. Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery [J]. Journal of Membrane Science, 1997, 132(1): 55-61. |
[17] | Qiu Jingyi, Li Mengyuan, Ni Jiangfeng, Zhai Maolin, Peng Jing, Xu Ling, Zhou Henghui, Li Jiuqiang, Wei Genshuan. Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery [J]. Journal of Membrane Science, 2007, 297(1): 174-180. |
[18] | Xing Dongbo, Zhang Shouhai, Yin Chunxiang, Zhang Bengui, Jian Xigao. Effect of amination agent on the properties of quaternized poly (phthalazinone ether sulfone) anion exchange membrane for vanadium redox flow battery application [J]. Journal of Membrane Science, 2010, 354(1): 68-73. |
[19] | Liu Shuai, Wang Lihua, Ding Yue, Liu Biqian, Han Xutong, Song Yanlin. Novel sulfonated poly(ether etherketon)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications [J]. Electrochimica Acta, 2014, 130: 90-96. |
[20] | Li Zhaohua, Dai Wenjing, Yu Lihong, Xi Jingyu, Qiu Xinping, Chen Liquan. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 18885-18893. |
[21] | Zhao Xinsheng, Fu Yongzhu, Li Wei, et al. Hydrocarbon blend membranes with suppressed chemical crossover for redox flow batteries [J]. RSC Advances, 2012, 2(13): 5554-5556. |
[22] | Chen Dongyang, Kim Soowhan, Sprenkle V, et al. Composite blend polymer membranes with increased proton selectivity and lifetime for vanadium redox flow batteries [J]. Journal of Power Sources, 2013, 231: 301-306. |
[23] | Chieng S C, Kazacos M, Skyllas-Kazacos M. Modification of Daramic, microporous separator, for redox flow battery applications [J]. Journal of Membrane Science, 1992, 75(1): 81-91. |
[24] | Li Xianfeng, Zhang Huamin, Mai Zhensheng, Zhang Hongzhang, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications [J]. Energy & Environmental Science, 2011, 4(4): 1147-1160. |
[25] | Schwenzer B, Zhang Jianlu, Kim Soowhan, Li Liyu, Liu Jun, Yang Zhenguo. Membrane development for vanadium redox flow batteries [J]. ChemSusChem, 2011, 4(10): 1388-1406. |
[26] | Li Liyu, Kim Soowhan, Wang Wei, Vijayakumar M, Nie Zimin, Chen Baowei, Zhang Jianlu, Xia Guanguang, Hu Jianzhi, Graff G, Liu Jun, Yang Zhenguo. A stable vanadium redox-flow battery with high energy density for large-scale energy storage[J]. Advanced Energy Materials, 2011, 1(3): 394-400. |
[27] | Mohammadi T, Skyllas-Kazacos M. Characterisation of novel composite membrane for redox flow battery applications [J]. Journal of Membrane Science, 1995, 98(1): 77-87. |
[28] | Mohammadi T, Skyllas-Kazacos M. Evaluation of the chemical stability of some membranes in vanadium solution [J]. Journal of Applied Electrochemistry, 1997, 27(2): 153- 160. |
[29] | Tian B, Yan C W, Wang F H. Proton conducting composite membrane from Daramic/Nafion for vanadium redox flow battery [J]. Journal of Membrane Science, 2004, 234(1): 51-54. |
[30] | Seo S J, Kim B C, Sung K W, et al. Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications [J]. Journal of Membrane Science, 2013, 428: 17-23. |
[31] | Mauritz K A, Moore R B. State of understanding of Nafion [J]. Chemical Reviews., 2004, 104 (10): 4535- 4586. |
[32] | Xi Jingyu, Wu Zenghua, Qiu Xinping, Chen Liquan. Nafion/SiO2 hybrid membrane for vanadium redox flow battery [J]. Journal of Power Sources, 2007, 166(2): 531-536. |
[33] | Teng Xiangguo, Zhao Yongtao, Xi Jingyu, Wu Zenghua, Qiu Xinping, Chen Liquan. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery [J]. Journal of Power Sources, 2009, 189(2): 1240-1246. |
[34] | Sang Shangbin, Wu Qiumei, Huang Kelong. Preparation of zirconium phosphate (ZrP)/Nafion 115 composite membrane and H+/VO2+ transfer property investigation [J]. Journal of Membrane Science, 2007, 305(1): 118-124. |
[35] | Lee K J, Chu Y H. Preparation of the graphene oxide (GO)/Nafion composite membrane for the vanadium redox flow battery (VRB) system [J]. Vacuum, 2014, 107: 269-276. |
[36] | Kim B G, Han T H, Cho C G. Sulfonated graphene oxide/Nafion composite membrane for vanadium redox flow battery [J]. Journal of Nanoscience and Nanotechnology, 2014, 14(12): 9073-9077. |
[37] | Luo Qingtao, Zhang Huamin, Chen Jian, Qian Peng, Zhai Yunfeng. Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications [J]. Journal of Membrane Science, 2008, 311(1): 98-103. |
[38] | Zeng Jie, Jiang Chunping, Wang Yaohui, Chen Jinwei, Zhu Shifu, Zhao Beijun, WangRuilin . Studies on polypyrrole modified Nafion membrane for vanadium redox flow battery [J]. Electrochemistry Communications, 2008, 10(3): 372-375. |
[39] | Qiu Jingyi, Zhai Maolin, Chen Jinhua, Wang Yu, Peng Jing, Xu Ling, Li Jiuqiang, Wei Genshuan. Performance of vanadium redox flow battery with a novel amphoteric ion exchange membrane synthesized by two-step grafting method [J]. Journal of Membrane Science, 2009, 342(1): 215-220. |
[40] | Qiu Jingyi, Zhao Long, Zhai Maolin, Ni Jiangfeng, Zhou Henghui, Peng Jing, Li Jiuqiang, Wei Genshuan. Pre-irradiation grafting of styrene and maleic anhydride onto PVDF membrane and subsequent sulfonation for application in vanadium redox batteries [J]. Journal of Power Sources, 2008, 177(2): 617-623. |
[41] | Luo Xuanli, Lu Zhengzhong, Xi Jingyu, Wu Zenghua, Zhu Wentao, Chen Liquan, Qiu Xinping. Influences of permeation of vanadium ions through PVDF-g-PSSA membranes on performances of vanadium redox flow batteries [J]. The Journal of Physical Chemistry B, 2005, 109(43): 20310- 20314. |
[42] | Li Zhaohua, Xi Jingyu, Zhou Haipeng, Liu Le, Wu Zenghua, Qiu Xinping, Chen Liquan. Preparation and characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application [J]. Journal of Power Sources, 2013, 237: 132-140. |
[43] | Chen Dongyang, Wang Shuanjin, Xiao Min, Meng Yuezhong. Synthesis and characterization of novel sulfonated poly (arylenethioether) ionomers for vanadium redox flow battery applications [J]. Energy & Environmental Science, 2010, 3(5): 622-628. |
[44] | Mai Zhensheng, Zhang Huamin, Li Xianfeng, Bi Cheng, Dai Hua. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application [J]. Journal of Power Sources, 2011, 196(1): 482-487. |
[45] | Zhang Shouhai, Yin Chunxiang, Xing Dongbo, Yang Daling, Jian Xigao. Preparation of chloromethylated/ quaternized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications [J]. Journal of Membrane Science, 2010, 363(1): 243-249. |
[46] | Yun S, Parrondo J, Ramani V. Derivatizedcardo- polyetherketone anion exchange membranes for all- vanadium redox flow batteries [J]. Journal of Materials Chemistry A, 2014, 2(18): 6605-6615. |
[47] | Zhang Shouhai, Zhang Bengui, Xing Dongbo, Jian Xigao. Poly (phthalazinone ether ketone ketone) anion exchange membranes with pyridinium as ion exchange groups for vanadium redox flow battery applications [J]. Journal of Materials Chemistry A, 2013, 1(39): 12246-12254. |
[48] | Zhang Qi, Dong Quanfeng, Zheng Mingsen, Tian Zhaowu. The preparation of a novel anion-exchange membrane and its application in all-vanadium redox batteries [J]. Journal of Membrane Science, 2012, 421/422: 232-237. |
[49] | Li Yan, Lin Xiaocheng, Wu Liang, Jiang Chenxiao, Xu Tongwen, et al. Quaternized membranes bearing zwitterionic groups for vanadium redox flow battery through a green route [J]. Journal of Membrane Science, 2015, 483: 60-69. |
[50] | Zhang Qiang, Zhang Suobo, Li Shenghai. Synthesis and characterization of novel cardo poly(aryl ether sulfone) bearing zwitterionic side groups for proton exchange membranes [J]. International Journal of Hydrogen Energy, 2011, 36(9): 5512-5520. |
[51] | Tiyapiboonchaiya C, Pringle J M, Sun Jiazeng, Byrne N, Howlett P C, MacFarlane D R, Forsyth M. The zwitterion effect in high-conductivity polyelectrolyte materials [J]. Nature Materials, 2004, 3(1): 29-32. |
[52] | Zhang Hongzhang, Zhang Huamin, Li Xianfeng, Mai Zhensheng, Zhang Jianlu. Nanofiltration (NF) membranes: the next generation separators for all vanadium redox flow batteries (VRBs)? [J]. Energy & Environmental Science, 2011, 4(5): 1676-1679. |
[53] | Zhang Hongzhang, Zhang Huamin, Li Xianfeng, Mai Zhensheng, Wei Wenping. Silica modified nanofiltration membranes with improved selectivity for redox flow battery application [J]. Energy & Environmental Science, 2012, 5(4): 6299-6303. |
[54] | Wei Wenping, Zhang Huamin, Li Xianfeng, Zhang Hongzhang, Li Yun, Vankelecom I. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability [J]. Physical Chemistry Chemical Physics, 2013, 15(6): 1766- 1771. |
[55] | Zhang Hongzhang, Zhang Huamin, Zhang Fengxiang, Li Xianfeng, Li Yun, Vankelecom I. Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application [J]. Energy & Environmental Science, 2013, 6(3): 776-781. |
[56] | Xu Wanxing, Li Xianfeng, Cao Jingyu, Zhang Hongzhang, Zhang Huamin. Membranes with well-defined ions transport channels fabricated via solvent-responsive layer-by-layer assembly method for vanadium flow battery [J]. Scientific Reports, 2014, 4. doi: 10.1038/ srep04016. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[3] | 闫军营, 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明, 徐铜文. 选择性电渗析:机遇与挑战[J]. 化工学报, 2023, 74(1): 224-236. |
[4] | 杜若晗, 逄博, 王宁, 崔福军, 郭明钢, 贺高红, 吴雪梅. 连续共价有机框架筛分复合膜及全钒电池性能[J]. 化工学报, 2022, 73(9): 4163-4172. |
[5] | 朱嫣然, 葛亮, 李兴亚, 徐铜文. 三相结构离子交换膜的构筑及应用研究[J]. 化工学报, 2022, 73(6): 2397-2414. |
[6] | 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52. |
[7] | 刘璇, 马溢昌, 张秋根, 刘庆林. 富勒烯交联季铵化聚苯醚阴离子交换膜的制备[J]. 化工学报, 2021, 72(7): 3849-3855. |
[8] | 刘元伟, 董晨初, 廖俊斌, 王超, 陈权, 沈江南. 不同侧链BPPO阴离子交换膜的制备及其抗污染性能[J]. 化工学报, 2021, 72(3): 1732-1741. |
[9] | 王超, 潘能修, 鲁丹, 廖俊斌, 沈江南, 高从堦. 电渗析用季铵化聚氯乙烯均相阴离子交换膜的制备[J]. 化工学报, 2019, 70(4): 1620-1627. |
[10] | 潘杰峰, 郑瑜, 丁金成, 施文慧, 沈江南, 高从堦. 膜法电容去离子技术用于水溶液中单/多价阴离子的分离[J]. 化工学报, 2018, 69(8): 3502-3508. |
[11] | 姜玉良, 刘元伟, 韩波, 阮慧敏, 沈江南, 高从堦. PEI交联的PECH/nylon复合阴离子交换膜的制备及性能研究[J]. 化工学报, 2018, 69(6): 2744-2752. |
[12] | 朱乐, 齐亮, 姚克俭, 谢晓峰. 磁电复合场下正极钒离子的跨膜传质[J]. 化工学报, 2016, 67(S1): 148-158. |
[13] | 冯磊, 赵玉彬, 谢晓峰, 吕亚非. 可控型季铵化降冰片烯衍生物阴离子交换膜的制备[J]. 化工学报, 2015, 66(S2): 257-262. |
[14] | 赵阳, 李雪, 冯志明, 赵玉彬, 谢晓峰, 柴春鹏, 罗运军. 降冰片烯类聚合物用于离子交换膜的研究进展[J]. CIESC Journal, 2015, 66(S1): 10-16. |
[15] | 赵玉彬, 王树博, 赵阳, 谢晓峰, 张振琳. 降冰片烯类季铵型阴离子交换膜的制备[J]. CIESC Journal, 2015, 66(S1): 338-342. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||