化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1732-1741.DOI: 10.11949/0438-1157.20200821
刘元伟1,2(),董晨初1,2,廖俊斌1,王超1,陈权1,沈江南1()
收稿日期:
2020-06-24
修回日期:
2020-09-01
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
沈江南
作者简介:
刘元伟(1979—),女,博士研究生,基金资助:
LIU Yuanwei1,2(),DONG Chenchu1,2,LIAO Junbin1,WANG Chao1,CHEN Quan1,SHEN Jiangnan1()
Received:
2020-06-24
Revised:
2020-09-01
Online:
2021-03-05
Published:
2021-03-05
Contact:
SHEN Jiangnan
摘要:
采用含有不同碳链长度的4-乙基吡啶、3-丁基吡啶与3-己基吡啶,通过亲核取代反应分别对溴化聚苯醚(BPPO)进行季铵化,制得三种阴离子交换膜(QBPPO-1、QBPPO-2、QBPPO-3)并对其电化学性能、脱盐性能以及抗污染性能进行了研究。实验结果表明随着吡啶环上烷基碳链的增长,制得的离子交换膜的离子交换容量呈现下降趋势,由1.92 mmol/g降至1.34 mmol/g,而膜面电阻逐渐增加,由2.99 Ω·cm2增加到10.59 Ω·cm2;在电渗析实验中,与商业日本Fuji阴离子交换膜相比,本实验制备的三种离子交换膜均呈现出较高的脱盐率;在污染实验中,随着高分子骨架侧链碳链的增长,离子交换膜在污染实验中的的转折时间逐渐变短,抗污染能力下降;计算模拟结果表明疏水作用在有机污染物(十二烷基苯磺酸钠)与离子交换膜内高分子骨架侧链的亲和相互作用中占有重要地位。
中图分类号:
刘元伟, 董晨初, 廖俊斌, 王超, 陈权, 沈江南. 不同侧链BPPO阴离子交换膜的制备及其抗污染性能[J]. 化工学报, 2021, 72(3): 1732-1741.
LIU Yuanwei, DONG Chenchu, LIAO Junbin, WANG Chao, CHEN Quan, SHEN Jiangnan. Anti-fouling properties and preparation of anion-exchange membranes based on BPPO modified by different side chain lengths[J]. CIESC Journal, 2021, 72(3): 1732-1741.
膜 | 脱盐率/% | 电流效率/% | 能耗/(kW·h/kg) |
---|---|---|---|
QBPPO-1 | 61.60 | 49.08 | 2.20 |
QBPPO-2 | 60.16 | 47.48 | 2.26 |
QBPPO-3 | 55.53 | 47.26 | 2.28 |
Fuji film | 59.28 | 41.79 | 2.38 |
表1 电渗析脱盐率、电流密度与能耗测试结果
Table 1 Removal rate, current efficiency and energy consumption in ED test after 3 h
膜 | 脱盐率/% | 电流效率/% | 能耗/(kW·h/kg) |
---|---|---|---|
QBPPO-1 | 61.60 | 49.08 | 2.20 |
QBPPO-2 | 60.16 | 47.48 | 2.26 |
QBPPO-3 | 55.53 | 47.26 | 2.28 |
Fuji film | 59.28 | 41.79 | 2.38 |
膜 | 转折时间/min |
---|---|
Fuji film | 100.5 |
QBPPO-1 | 702.4 |
QBPPO-2 | 30.7 |
QBPPO-3 | 20.1 |
表2 不同离子交换膜污染实验转折时间测试结果
Table 2 Transtion time of different membranes in fouling test
膜 | 转折时间/min |
---|---|
Fuji film | 100.5 |
QBPPO-1 | 702.4 |
QBPPO-2 | 30.7 |
QBPPO-3 | 20.1 |
Complex | ADCH (side chain) | ADCH(SDBS) | ||||
---|---|---|---|---|---|---|
Pyridine group | Methyl group | Alkyl chain | Sulfonic group | Phenyl group | Alkyl chain | |
QBPPO-1 | 0.662 | 0.122 | 0.216 | -0.921 | -0.161 | 0.082 |
QBPPO-2 | 0.637 | 0.242 | 0.121 | -0.912 | -0.164 | 0.076 |
QBPPO-3 | 0.617 | 0.273 | 0.120 | -0.911 | -0.173 | 0.083 |
表3 不同侧链与SDBS形成的复合物的ADCH原子电荷
Table 3 ADCH atomic charges of complexes formed by different side chains and SDBS
Complex | ADCH (side chain) | ADCH(SDBS) | ||||
---|---|---|---|---|---|---|
Pyridine group | Methyl group | Alkyl chain | Sulfonic group | Phenyl group | Alkyl chain | |
QBPPO-1 | 0.662 | 0.122 | 0.216 | -0.921 | -0.161 | 0.082 |
QBPPO-2 | 0.637 | 0.242 | 0.121 | -0.912 | -0.164 | 0.076 |
QBPPO-3 | 0.617 | 0.273 | 0.120 | -0.911 | -0.173 | 0.083 |
1 | 徐丽丽. 电渗析在高盐废水“零排放”中的应用[J]. 污染防治技术, 2019, 32(4): 72-74. |
Xu L L. The application of electrodialysis in the “zero discharge” of high-salinity wastewater[J]. Pollution Control Technology, 2019, 32(4): 72-74. | |
2 | 汪耀明, 李为, 徐铜文. 电渗析技术清洁分离纯化肌氨酸[J]. 化工学报, 2015, 66(8): 3137-3143. |
Wang Y M, Li W, Xu T W. Electrodialysis for cleaner separation and purification of sarcosine[J]. CIESC Journal, 2015, 66 (8): 3137-3143. | |
3 | Ghalloussi R, Chaabane L, Larchet C, et al. Structural and physicochemical investigation of ageing of ion-exchange membranes in electrodialysis for food industry[J]. Seperation and Purification Technology. 2014, 123: 229-234. |
4 | 蔡媛媛, 郭百涛, 邢卫红, 等. 面向健康产业应用需求的膜技术与膜材料[J]. 化工学报, 2020, 71(7): 2921-2932. |
Cai Y Y, Guo B T, Xing W H, et al. Progress research on development of membrane technology and materials for health industry[J]. CIESC Journal, 2020, 71(7): 2921-2932 | |
5 | Kum S, Lawler D F, Katz L E. Separation characteristics of cations and natural organic matter in electrodialysis[J]. Separation and Purification Technology, 2020, 250: 117070. |
6 | Tanaka N, Nagase M, Higa M. Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances[J]. Desalination, 2012, 296: 81-86. |
7 | Wang W Y, Fu R Q, Liu Z M, et al. Low-resistance anti-fouling ion exchange membranes fouled by organic foulants in electrodialysis[J]. Desalination, 2017, 417: 1-8. |
8 | Bukhovets A, Eliseeva T, Oren Y. Fouling of anion-exchange membranes in electrodialysis of aromatic amino acid solution[J]. Journal of Membrane Science, 2010, 364(1/2): 339-343. |
9 | 徐燕青, 李文飞, 吴梦瑶, 等. 用于喷墨印花染料纯化的自组装GO/TiO2复合纳滤膜的制备[J]. 化工学报, 2020, 71(3): 1352-1361. |
Xu Y Q, Li W F, Wu M Y, et al. Preparation of self-assembled graphene oxide / nano TiO2 composite nanofiltration membrane for inkjet printing dye[J]. CIESC Journal, 2020, 71(3): 1352-1361. | |
10 | Zhao Z J, Shi S Y, Cao H B, et al. Electrochemical impedance spectroscopy and surface properties characterization of anion exchange membrane fouled by sodium dodecyl sulfate[J], Journal of Membrane Science, 2017, 530: 220-231. |
11 | Lee H J, Park J S, Kang M S, et al. Effects of silica sol on ion exchange membranes: electrochemical characterization of anion exchange membranes in electrodialysis of silica sol containing-solutions[J]. Korean J. Chem. Eng., 2003, 20(5): 889-895. |
12 | Lee H J, Hong M K, Han S D, et al. Analysis of fouling potential in the electrodialysis process in the presence of an anionic surfactant foulant[J]. Journal of Membrane Science, 2008, 325(2): 719-726. |
13 | Sosa-Fernandez P A, Miedema S J, Bruning H, et al. Influence of solution composition on fouling of anion exchange membranes desalinating polymer-flooding produced water[J]. Journal of Colloid and Interface Science, 2019, 557: 381-394. |
14 | Higa M, Tanaka N, Nagase M, et al. Electrodialytic properties of aromatic and aliphatic type hydrocarbon-based anion-exchange membranes with various anion-exchange groups[J]. Polymer, 2014, 55(16): 3951-3960. |
15 | Korngold E, de Körösy F, Rahav R, et al. Fouling of anionselective membranes in electrodialysis [J]. Desalination, 1970, 8(2): 195-220. |
16 | Khan M I, Zheng C L, Mondal A N, et al. Preparation of anion exchange membranes from BPPO and dimethylethanolamine for electrodialysis[J]. Desalination, 2017, 402: 10-18. |
17 | Chen X, Jiang Y L, Yang S S, et al. Internal cross-linked anion exchange membranes with improved dimensional stability for electrodialysis[J]. Journal of Membrane Science, 2017, 542: 280-288. |
18 | 杨谦, 张瑜兰, 张秋根, 等. 高耐碱性交联型聚苯醚阴离子交换膜的制备[J]. 膜科学与技术, 2020, 40(1): 16-22. |
Yang Q, Zhang Y L, Zhang Q G, et al. Preparation and characterization of poly(2, 6-dimethyl-1, 4-phenylene oxide) based crosslinked anion exchange membranes[J]. Membrane Science and Technology, 2020, 40(1): 16-22. | |
19 | Mondal A N, He Y, Wu L, et al. Click mediated high-performance anion exchange membranes with improved water uptake[J]. Journal of Materials Chemistry A, 2016, 5(3): 1022-1027. |
20 | 王超, 潘能修, 鲁丹, 等. 电渗析用季铵化聚氯乙烯均相阴离子交换膜的制备[J]. 化工学报, 2019, 70(4): 1620-1627. |
Wang C, Pan N X, Lu D, et al. Preparation of homogeneous anion exchange membrane based on quaternized PVC for electrodialysis[J]. CIESC Journal, 2019, 70(4): 1620-1627. | |
21 | 姜玉良, 刘元伟, 韩波, 等. PEI交联的PECH/nylon复合阴离子交换膜的制备及性能研究[J]. 化工学报, 2018, 69(6): 2744-2752. |
Jiang Y L, Liu Y W, Han B, et al. Preparation and properties of PEI crosslinked PECH/nylon composite anion exchange membrane[J]. CIESC Journal, 2018, 69(6): 2744-2752. | |
22 | Liu Y, Wang J Y. Preparation of anion exchange membrane by efficient functionalization of polysulfone for electrodialysis[J]. Journal of Membrane Science, 2020, 596: 117591. |
23 | Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies - some procedures with reduced errors[J]. Molecular Physics, 1970, 19(4): 553-566. |
24 | Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energyformula into a functional of the electron density[J]. Physical Review. B,Condensed Matter, 1988, 37(2): 785-789. |
25 | Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98: 5648-5652. |
26 | Marenich A V, Cramer C J, Truhlar D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. Journal of Physical Chemisitry B, 2009, 113(18): 6378-6396. |
27 | 赵理达, 颜欢, 李冰, 等. 沥青质杂环模型分子间相互作用及溶剂化效应的理论研究[J]. 化学通报, 2018, 81(11): 1033-1043. |
Zhao L D, Yan H, Li B, et al. Theoretical study on intermolecular interactions and solvation effects of the heterocyclic molecule models of asphaltene[J]. Chemistry, 2018, 81(11): 1033-1043. | |
28 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
29 | 卢天, 陈飞武. 原子电荷计算方法的对比[J]. 物理化学学报, 2012, 28(1): 1-18. |
Lu T, Chen F W. Comparison of computational methods for atomic charges[J]. Acta Phys. -Chim. Sin., 2012, 28(1): 1-18. | |
30 | Khan M I, Mondal A N, Cheng C, et al. Porous BPPO-based membranes modified by aromatic amine for acid recovery[J]. Separation and Purification Technology, 2016, 157: 27-34. |
31 | Liu X P, Zhang Y F, Chen Y Z, et al. A superhydrophobic bromomethylated poly(phenylene oxide) as a multifunctional polymer filler in SPEEK membrane towards neat methanol operation of direct methanol fuel cells[J]. Journal of Membrane Science, 2017, 544: 58-67. |
32 | Pan J F, Ding J C, Tan R Q, et al. Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro-deposition of polyethyleneimine[J]. Journal of Membrane Science, 2017, 539: 263-272. |
33 | Ran J, Wu L, He Y B, et al. Ion exchange membranes: new developments and applications[J]. Journal of Membrane Science, 2017, 522: 267-291. |
34 | Hibbs M R, Hickner M A, Alam T M, et al. Transport properties of hydroxide and proton conducting membranes[J]. Chemistry of Materials, 2008, 20: 2566-2573. |
35 | La Cerva M L, Gurreri L, Tedesco M, et al. Determination of limiting current density and current efficiency in electrodialysis units[J]. Desalination, 2018, 445: 138-148. |
36 | Yamauchi A, Sayed A M E, Mizuguchi K, et al. Ion transport behavior in diffusion layer of new designed ion exchange-mosaic composite polymer membrane[J]. Journal of Membrane Science, 2006, 283(1/2): 301-309. |
37 | Pan J F, Zhang W, Ruan H M, et al. Separation of mixed salts (Cl-/SO42-) by ED based on monovalent anion selective membranes[J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 57-862. |
38 | Sharma P P, Yadav V, Rajput A, et al. PVDF-g-poly (styrene-co-vinylbenzyl chloride) based anion exchange membrane: high salt removal efficiency and stability[J]. Desalination, 2018, 444: 35-43. |
39 | 程双, 李振东. 表面活性剂与聚合物相互作用的研究进展[J]. 化工科技, 2017, 25(5): 66-72. |
Cheng S, Li Z D. Interaction between surfactants and polymers[J]. Science & Technology in Chemical Industry, 2017, 25(5): 66-72. |
[1] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[2] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[3] | 闫军营, 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明, 徐铜文. 选择性电渗析:机遇与挑战[J]. 化工学报, 2023, 74(1): 224-236. |
[4] | 杨宏欣, 李兴亚, 葛亮, 徐铜文. 含哌啶阳离子侧长链型一/二价阴离子选择性分离膜的制备[J]. 化工学报, 2022, 73(8): 3739-3748. |
[5] | 李智超, 郑瑜, 张润楠, 姜忠义. 高通量抗污染氧化石墨烯膜研究进展[J]. 化工学报, 2022, 73(6): 2370-2380. |
[6] | 杨珊珊, 姚宇洋, 董云迪, 徐志鹏, 高尚上, 阮慧敏, 沈江南. 基于二苯并-18-冠-6基体改性的K+选择性离子交换膜的制备及性能研究[J]. 化工学报, 2022, 73(4): 1781-1793. |
[7] | 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52. |
[8] | 孙博, 王建伟, 张小松. 基于电渗析的溶液再生传质模型及性能分析[J]. 化工学报, 2021, 72(S1): 218-226. |
[9] | 刘璇, 马溢昌, 张秋根, 刘庆林. 富勒烯交联季铵化聚苯醚阴离子交换膜的制备[J]. 化工学报, 2021, 72(7): 3849-3855. |
[10] | 刘嘉玮, 郝雨峰, 苏延磊. 石墨烯量子点纳滤膜的仿生修饰及稳定性研究[J]. 化工学报, 2021, 72(6): 3390-3398. |
[11] | 唐元晖, 孙文文, 李太雨, 毛鹏, 金义凡, 汪林, 林亚凯, 王晓琳. 双极膜电渗析法麦草畏生产废水的资源化利用研究[J]. 化工学报, 2021, 72(12): 6328-6339. |
[12] | 祝海涛, 杨波, 吴雅琴, 高从堦. 电渗析脱盐过程离子传递现象的数值模拟[J]. 化工学报, 2020, 71(8): 3518-3526. |
[13] | 徐士鸣, 刘志强, 吴曦, 张又文, 胡军勇, 吴德兵, 冷强, 金东旭, 王平. 溶液浓差能驱动的逆电渗析反应器制氢实验研究[J]. 化工学报, 2020, 71(5): 2283-2291. |
[14] | 王超, 潘能修, 鲁丹, 廖俊斌, 沈江南, 高从堦. 电渗析用季铵化聚氯乙烯均相阴离子交换膜的制备[J]. 化工学报, 2019, 70(4): 1620-1627. |
[15] | 李屹, 张小松. 一种基于电渗析的空气直接富氧装置影响因素[J]. 化工学报, 2018, 69(S2): 388-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||