化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3849-3855.doi: 10.11949/0438-1157.20210273
LIU Xuan(),MA Yichang,ZHANG Qiugen(
),LIU Qinglin
摘要:
通过富勒烯C60与乙二胺合成立体纳米分子C60(EDA)8,并以此为交联剂与三阳离子功能化聚苯醚制备了一系列交联型阴离子交换膜。C60(EDA)8中立体纳米结构有效地支撑了高分子链段,构建了更发达的离子通道,有效地提升了电导率。实验结果表明,随着C60(EDA)8加入量增加,交联膜的离子交换容量减小,而电导率却逐渐增加。当交联剂C60(EDA)8加入量为5%时,电导率提高了34%。此外,所制备的离子交换膜均表现出良好的抗溶胀能力、力学性能与耐碱性。
中图分类号:
1 | Chen N J, Lee Y M. Anion exchange polyelectrolytes for membranes and ionomers[J]. Progress in Polymer Science, 2021, 113: 101345. |
2 | Vijayakumar V, Nam S Y. Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells[J]. Journal of Industrial and Engineering Chemistry, 2019, 70: 70-86. |
3 | Scott K, Shukla A K, Jackson C L, et al. A mixed-reactants solid-polymer-electrolyte direct methanol fuel cell[J]. Journal of Power Sources, 2004, 126(1/2): 67-75. |
4 | Abdel Rahim M A, Abdel Hameed R M, Khalil M W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium[J]. Journal of Power Sources, 2004, 134(2): 160-169. |
5 | Yu E H, Scott K, Reeve R W. Electrochemical reduction of oxygen on carbon supported Pt and Pt/Ru fuel cell electrodes in alkaline solutions[J]. Fuel Cells, 2003, 3(4): 169-176. |
6 | Danks T N, Slade R C T, Varcoe J R. Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells[J]. Journal of Materials Chemistry, 2003, 13(4): 712-721. |
7 | Wang J H, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398. |
8 | Yang K, Chu X M, Zhang X J, et al. The effect of polymer backbones and cation functional groups on properties of anion exchange membranes for fuel cells[J]. Journal of Membrane Science, 2020, 603: 118025. |
9 | Pan J, Zhu L, Han J J, et al. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks[J]. Chemistry of Materials, 2015, 27(19): 6689-6698. |
10 | Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability[J]. Chemical Communications, 2014, 50(31): 4092-4095. |
11 | Jin C H, Zhang S, Cong Y Y, et al. Highly durable and conductive poly(arylene piperidine) with a long heterocyclic ammonium side-chain for hydroxide exchange membranes[J]. International Journal of Hydrogen Energy, 2019, 44(45): 24954-24964. |
12 | Hu C, Deng X L, Dong X C, et al. Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes[J]. Journal of Membrane Science, 2021, 619: 118806. |
13 | Cha M S, Jeong H Y, Shin H Y, et al. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application[J]. Journal of Power Sources, 2017, 363: 78-86. |
14 | Tang X Y, Qu Y, Deng S L, et al. Fullerene-regulated graphene oxide nanosheet membranes with well-defined laminar nanochannels for precise molecule sieving[J]. Journal of Materials Chemistry A, 2018, 6(45): 22590-22598. |
15 | Maurya S, Noh S, Matanovic I, et al. Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W·cm-2 power density[J]. Energy & Environmental Science, 2018, 11(11): 3283-3291. |
16 | Han J J, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332. |
17 | Gao X L, Sun L X, Wu H Y, et al. Highly conductive fluorine-based anion exchange membranes with robust alkaline durability[J]. Journal of Materials Chemistry A, 2020, 8(26): 13065-13076. |
18 | Coro J, Suárez M, Silva L S R, et al. Fullerene applications in fuel cells: a review[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17944-17959. |
19 | Ran J, Wu L, Ge Q Q, et al. High performance anion exchange membranes obtained through graft architecture and rational cross-linking[J]. Journal of Membrane Science, 2014, 470: 229-236. |
20 | Zhang G, Li H T, Ma W J, et al. Cross-linked membranes with a macromolecular cross-linker for direct methanol fuel cells[J]. Journal of Materials Chemistry, 2011, 21(14): 5511-5518. |
21 | Lai A N, Wang Z, Yin Q, et al. Comb-shaped fluorene-based poly(arylene ether sulfone nitrile) as anion exchange membrane[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11148-11157. |
22 | Zhang K B, Gong S T, Zhao B L, et al. Bent-twisted block copolymer anion exchange membrane with improved conductivity[J]. Journal of Membrane Science, 2018, 550: 59-71. |
23 | Mo Z H, Yang R, Hong S, et al. In-situ preparation of cross-linked hybrid anion exchange membrane of quaternized poly (styrene-b-isobutylene-b-styrene) covalently bonded with graphene[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1790-1804. |
24 | Qaisrani N A, Ma L L, Hussain M, et al. Hydrophilic flexible ether containing, cross-linked anion-exchange membrane quaternized with DABCO[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3510-3521. |
25 | Li L J, Zhang J J, Jiang T, et al. High ion conductivity and diffusivity in the anion exchange membrane enabled by tethering with multication strings on the poly(biphenyl alkylene) backbone[J]. ACS Applied Energy Materials, 2020, 3(7): 6268-6279. |
26 | Yang Z J, Liu Y Z, Guo R, et al. Highly hydroxide conductive ionomers with fullerene functionalities[J]. Chemical Communications, 2016, 52(13): 2788-2791. |
27 | Wang X Q, Lin C X, Liu F H, et al. Alkali-stable partially fluorinated poly(arylene ether) anion exchange membranes with a claw-type head for fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(26): 12455-12465. |
28 | Ma L L, Qaisrani N A, Hussain M, et al. Cyclodextrin modified, multication cross-linked high performance anion exchange membranes for fuel cell application[J]. Journal of Membrane Science, 2020, 607: 118190. |
29 | Lin C X, Wang X Q, Li L, et al. Triblock copolymer anion exchange membranes bearing alkyl-tethered cycloaliphatic quaternary ammonium-head-groups for fuel cells[J]. Journal of Power Sources, 2017, 365: 282-292. |
30 | Zhuo Y Z, Lai A L, Zhang Q G, et al. Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly(arylene ether sulfone) as anion exchange membranes[J]. Journal of Materials Chemistry A, 2015, 3(35): 18105-18114. |
[1] | 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52. |
[2] | 徐子昂, 万磊, 刘凯, 王保国. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906. |
[3] | 宇高义郎, 许竞莹, 王国卓, 陈志豪. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282. |
[4] | 刘元伟, 董晨初, 廖俊斌, 王超, 陈权, 沈江南. 不同侧链BPPO阴离子交换膜的制备及其抗污染性能[J]. 化工学报, 2021, 72(3): 1732-1741. |
[5] | 徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520. |
[6] | 朱鹏飞, 郭磊磊, 尧兢, 杨福胜, 张早校, 吴震. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099. |
[7] | 郭佳宁, 向中华. 金属大环化合物基氧还原电催化剂的研究进展[J]. 化工学报, 2021, 72(1): 384-397. |
[8] | 张劲, 郭志斌, 张巨佳, 王海宁, 相艳, 蒋三平, 卢善富. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596. |
[9] | 李慧, 杨正金, 徐铜文. 高温质子交换膜研究进展[J]. 化工学报, 2021, 72(1): 132-142. |
[10] | 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453. |
[11] | 陈海涛, 乔金硕, 王振华, 孙旺, 李海军, 孙克宁. 原位双金属纳米颗粒YST复合阳极的构筑及其直接碳催化性能研究[J]. 化工学报, 2020, 71(9): 4270-4281. |
[12] | 肖扬, 徐春明, 杨晓霞, 张立红, 孙旺, 乔金硕, 王振华, 孙克宁. NiMn2O4尖晶石氧化物阴极的制备及电化学性能研究[J]. 化工学报, 2020, 71(9): 4292-4302. |
[13] | 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257. |
[14] | 穆嫒萍, 叶丁丁, 陈蓉, 朱恂, 廖强. 基于棉线的微流体燃料电池阳极传质特性LB模拟[J]. 化工学报, 2020, 71(7): 3278-3287. |
[15] | 叶小琴, 闻沚玥, 沈王强, 卢兴. 富勒烯材料在钙钛矿太阳能电池中的应用[J]. 化工学报, 2020, 71(6): 2510-2529. |
|