化工学报 ›› 2021, Vol. 72 ›› Issue (7): 3849-3855.doi: 10.11949/0438-1157.20210273

• 材料化学工程与纳米技术 • 上一篇    下一篇

富勒烯交联季铵化聚苯醚阴离子交换膜的制备

刘璇(),马溢昌,张秋根(),刘庆林   

  1. 厦门大学化学化工学院,福建 厦门 361005
  • 收稿日期:2021-02-19 修回日期:2021-05-02 出版日期:2021-07-05 发布日期:2021-07-05
  • 通讯作者: 张秋根 E-mail:2829349251@qq.com;qgzhang@xmu.edu.cn
  • 作者简介:刘旋(1998—),女,博士研究生, 2829349251@qq.com
  • 基金资助:
    国家自然科学基金项目(21878253);福建省科技计划项目(2020H0003)

Preparation of fullerene crosslinked quaternized polyphenylene oxide anion exchange membrane

LIU Xuan(),MA Yichang,ZHANG Qiugen(),LIU Qinglin   

  1. College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2021-02-19 Revised:2021-05-02 Published:2021-07-05 Online:2021-07-05
  • Contact: ZHANG Qiugen E-mail:2829349251@qq.com;qgzhang@xmu.edu.cn

摘要:

通过富勒烯C60与乙二胺合成立体纳米分子C60(EDA)8,并以此为交联剂与三阳离子功能化聚苯醚制备了一系列交联型阴离子交换膜。C60(EDA)8中立体纳米结构有效地支撑了高分子链段,构建了更发达的离子通道,有效地提升了电导率。实验结果表明,随着C60(EDA)8加入量增加,交联膜的离子交换容量减小,而电导率却逐渐增加。当交联剂C60(EDA)8加入量为5%时,电导率提高了34%。此外,所制备的离子交换膜均表现出良好的抗溶胀能力、力学性能与耐碱性。

关键词: 燃料电池, 阴离子交换膜, 富勒烯, 聚苯醚, 交联膜

Abstract:

In this work, the nano-molecule C60(EDA)8 was synthesized by the fullerene C60 and ethylenediamine, which was used as rigid crosslinking agent to crosslink polyphenylene oxide (PPO) with triple quaternary ammonium groups for the preparation of high-performance anion exchange membranes. With the rigid structure of C60 in C60(EDA)8, it effectively supports the polymer chain segment and builds a wider ion channel, thereby reducing membrane swelling and improving conductivity. The experimental results show that with the increase of C60(EDA)8 input, the ion exchange capacity(IEC) of the cross-linked membrane decreases, but the conductivity gradually increases. When the crosslinking agent C60(EDA)8 is added at 5%, the conductivity of the membrane increases 34%. In addition, the prepared crosslinked membranes all show good swelling resistance, mechanical properties and alkaline stability.

Key words: fuel cell, anion exchange membrane, fullerene, polyphenylene oxide, crosslinked membrane

中图分类号: 

  • TQ 028.8

图1

FPPO-CEx AEMs的反应路径"

图2

C60(EDA)8的热重分析"

图3

FPPO-CEx AEMs的凝胶分率(a)和小角散射图(b)"

图4

FPPO-CEx AEMs的AFM相图"

图5

FPPO-CEx AEMs的IEC、WU(a)和SR、λ (b) (WU、SR和λ分别在30℃和60℃下进行检测)"

图6

FPPO-CEx AEMs的力学性能(湿态下)"

图7

FPPO-CEx AEMs的离子电导率(a)和耐碱性(b)"

1 Chen N J, Lee Y M. Anion exchange polyelectrolytes for membranes and ionomers[J]. Progress in Polymer Science, 2021, 113: 101345.
2 Vijayakumar V, Nam S Y. Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells[J]. Journal of Industrial and Engineering Chemistry, 2019, 70: 70-86.
3 Scott K, Shukla A K, Jackson C L, et al. A mixed-reactants solid-polymer-electrolyte direct methanol fuel cell[J]. Journal of Power Sources, 2004, 126(1/2): 67-75.
4 Abdel Rahim M A, Abdel Hameed R M, Khalil M W. Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium[J]. Journal of Power Sources, 2004, 134(2): 160-169.
5 Yu E H, Scott K, Reeve R W. Electrochemical reduction of oxygen on carbon supported Pt and Pt/Ru fuel cell electrodes in alkaline solutions[J]. Fuel Cells, 2003, 3(4): 169-176.
6 Danks T N, Slade R C T, Varcoe J R. Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells[J]. Journal of Materials Chemistry, 2003, 13(4): 712-721.
7 Wang J H, Zhao Y, Setzler B P, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398.
8 Yang K, Chu X M, Zhang X J, et al. The effect of polymer backbones and cation functional groups on properties of anion exchange membranes for fuel cells[J]. Journal of Membrane Science, 2020, 603: 118025.
9 Pan J, Zhu L, Han J J, et al. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks[J]. Chemistry of Materials, 2015, 27(19): 6689-6698.
10 Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability[J]. Chemical Communications, 2014, 50(31): 4092-4095.
11 Jin C H, Zhang S, Cong Y Y, et al. Highly durable and conductive poly(arylene piperidine) with a long heterocyclic ammonium side-chain for hydroxide exchange membranes[J]. International Journal of Hydrogen Energy, 2019, 44(45): 24954-24964.
12 Hu C, Deng X L, Dong X C, et al. Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes[J]. Journal of Membrane Science, 2021, 619: 118806.
13 Cha M S, Jeong H Y, Shin H Y, et al. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application[J]. Journal of Power Sources, 2017, 363: 78-86.
14 Tang X Y, Qu Y, Deng S L, et al. Fullerene-regulated graphene oxide nanosheet membranes with well-defined laminar nanochannels for precise molecule sieving[J]. Journal of Materials Chemistry A, 2018, 6(45): 22590-22598.
15 Maurya S, Noh S, Matanovic I, et al. Rational design of polyaromatic ionomers for alkaline membrane fuel cells with >1 W·cm-2 power density[J]. Energy & Environmental Science, 2018, 11(11): 3283-3291.
16 Han J J, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332.
17 Gao X L, Sun L X, Wu H Y, et al. Highly conductive fluorine-based anion exchange membranes with robust alkaline durability[J]. Journal of Materials Chemistry A, 2020, 8(26): 13065-13076.
18 Coro J, Suárez M, Silva L S R, et al. Fullerene applications in fuel cells: a review[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17944-17959.
19 Ran J, Wu L, Ge Q Q, et al. High performance anion exchange membranes obtained through graft architecture and rational cross-linking[J]. Journal of Membrane Science, 2014, 470: 229-236.
20 Zhang G, Li H T, Ma W J, et al. Cross-linked membranes with a macromolecular cross-linker for direct methanol fuel cells[J]. Journal of Materials Chemistry, 2011, 21(14): 5511-5518.
21 Lai A N, Wang Z, Yin Q, et al. Comb-shaped fluorene-based poly(arylene ether sulfone nitrile) as anion exchange membrane[J]. International Journal of Hydrogen Energy, 2020, 45(19): 11148-11157.
22 Zhang K B, Gong S T, Zhao B L, et al. Bent-twisted block copolymer anion exchange membrane with improved conductivity[J]. Journal of Membrane Science, 2018, 550: 59-71.
23 Mo Z H, Yang R, Hong S, et al. In-situ preparation of cross-linked hybrid anion exchange membrane of quaternized poly (styrene-b-isobutylene-b-styrene) covalently bonded with graphene[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1790-1804.
24 Qaisrani N A, Ma L L, Hussain M, et al. Hydrophilic flexible ether containing, cross-linked anion-exchange membrane quaternized with DABCO[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3510-3521.
25 Li L J, Zhang J J, Jiang T, et al. High ion conductivity and diffusivity in the anion exchange membrane enabled by tethering with multication strings on the poly(biphenyl alkylene) backbone[J]. ACS Applied Energy Materials, 2020, 3(7): 6268-6279.
26 Yang Z J, Liu Y Z, Guo R, et al. Highly hydroxide conductive ionomers with fullerene functionalities[J]. Chemical Communications, 2016, 52(13): 2788-2791.
27 Wang X Q, Lin C X, Liu F H, et al. Alkali-stable partially fluorinated poly(arylene ether) anion exchange membranes with a claw-type head for fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(26): 12455-12465.
28 Ma L L, Qaisrani N A, Hussain M, et al. Cyclodextrin modified, multication cross-linked high performance anion exchange membranes for fuel cell application[J]. Journal of Membrane Science, 2020, 607: 118190.
29 Lin C X, Wang X Q, Li L, et al. Triblock copolymer anion exchange membranes bearing alkyl-tethered cycloaliphatic quaternary ammonium-head-groups for fuel cells[J]. Journal of Power Sources, 2017, 365: 282-292.
30 Zhuo Y Z, Lai A L, Zhang Q G, et al. Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly(arylene ether sulfone) as anion exchange membranes[J]. Journal of Materials Chemistry A, 2015, 3(35): 18105-18114.
[1] 付凤艳, 邢广恩. 碱性燃料电池用阴离子交换膜的研究进展[J]. 化工学报, 2021, 72(S1): 42-52.
[2] 徐子昂, 万磊, 刘凯, 王保国. 高稳定碱性离子膜分子设计研究进展[J]. 化工学报, 2021, 72(8): 3891-3906.
[3] 宇高义郎, 许竞莹, 王国卓, 陈志豪. 质子交换膜燃料电池内含水气体扩散层的冻结特性研究[J]. 化工学报, 2021, 72(4): 2276-2282.
[4] 刘元伟, 董晨初, 廖俊斌, 王超, 陈权, 沈江南. 不同侧链BPPO阴离子交换膜的制备及其抗污染性能[J]. 化工学报, 2021, 72(3): 1732-1741.
[5] 徐斌. 基于改进差分进化算法的质子交换膜燃料电池模型参数优化识别[J]. 化工学报, 2021, 72(3): 1512-1520.
[6] 朱鹏飞, 郭磊磊, 尧兢, 杨福胜, 张早校, 吴震. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099.
[7] 郭佳宁, 向中华. 金属大环化合物基氧还原电催化剂的研究进展[J]. 化工学报, 2021, 72(1): 384-397.
[8] 张劲, 郭志斌, 张巨佳, 王海宁, 相艳, 蒋三平, 卢善富. 聚醚砜-聚乙烯吡咯烷酮高温聚合物电解质膜及燃料电池堆性能研究[J]. 化工学报, 2021, 72(1): 589-596.
[9] 李慧, 杨正金, 徐铜文. 高温质子交换膜研究进展[J]. 化工学报, 2021, 72(1): 132-142.
[10] 韩超灵, 陈振乾. 添加碳纳米颗粒对磷氮双掺杂石墨烯电化学特性的影响[J]. 化工学报, 2020, 71(S1): 448-453.
[11] 陈海涛, 乔金硕, 王振华, 孙旺, 李海军, 孙克宁. 原位双金属纳米颗粒YST复合阳极的构筑及其直接碳催化性能研究[J]. 化工学报, 2020, 71(9): 4270-4281.
[12] 肖扬, 徐春明, 杨晓霞, 张立红, 孙旺, 乔金硕, 王振华, 孙克宁. NiMn2O4尖晶石氧化物阴极的制备及电化学性能研究[J]. 化工学报, 2020, 71(9): 4292-4302.
[13] 王茹, 沈永超, 卫东, 郭倩. 基于直流内阻和交流阻抗特性的PEMFC水管理状态分析[J]. 化工学报, 2020, 71(7): 3247-3257.
[14] 穆嫒萍, 叶丁丁, 陈蓉, 朱恂, 廖强. 基于棉线的微流体燃料电池阳极传质特性LB模拟[J]. 化工学报, 2020, 71(7): 3278-3287.
[15] 叶小琴, 闻沚玥, 沈王强, 卢兴. 富勒烯材料在钙钛矿太阳能电池中的应用[J]. 化工学报, 2020, 71(6): 2510-2529.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[2] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[3] 郑裕国, 陈小龙, 汪钊, 沈寅初. 低高径比外循环气升式生物反应器带渣发酵生产有效霉素[J]. CIESC Journal, 2004, 12(1): 102 -107 .
[4] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[5] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[6] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[7] 奚红霞, 谢兰英, 李祥斌, 李忠. 超临界条件下苯酚在活性炭和聚合物吸附剂上吸附等温线的测定[J]. CIESC Journal, 2003, 11(3): 253 -256 .
[8] 江永亨, 王军, 金以慧. 基于增广森林结构的一般网络最小费用问题瓶颈分析[J]. CIESC Journal, 2003, 11(1): 62 -67 .
[9] 佘鹏, 刘铮, 丁富新, 杨建刚, 刘翔. 菲污染土壤的电修复过程[J]. CIESC Journal, 2003, 11(1): 73 -78 .
[10] 毕明树, 喻建良, 周一卉, 王淑兰, 丁信伟, ABULITI Abudula. 开敞空间蒸气云爆炸压力的实验研究[J]. CIESC Journal, 2003, 11(1): 90 -93 .