化工学报 ›› 2023, Vol. 74 ›› Issue (1): 224-236.DOI: 10.11949/0438-1157.20221073
闫军营(), 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明(), 徐铜文()
收稿日期:
2022-08-01
修回日期:
2022-10-26
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
汪耀明,徐铜文
作者简介:
闫军营(1997—),男,博士研究生,yjy0822@mail.ustc.edu.cn
基金资助:
Junying YAN(), Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG(), Tongwen XU()
Received:
2022-08-01
Revised:
2022-10-26
Online:
2023-01-05
Published:
2023-03-20
Contact:
Yaoming WANG, Tongwen XU
摘要:
电渗析海水制盐、氯碱工业中的盐水精制、盐湖提锂以及冶金行业中的废酸废碱资源化,均要求实现相同电荷不同价态的离子分离,因此离子精准分离是化工生产中的重要一环。选择性电渗析是将电渗析中普通阴阳离子交换膜替换为具有一/多价分离特性的离子膜,进而实现离子的选择性分离。本文详细介绍了一/二价离子膜分离机理以及制备路线;同时也对选择性电渗析的主要膜堆结构以及工作原理进行了阐述;详细介绍了选择性电渗析目前在离子分离中的应用与机遇;指出了选择性电渗析在应用中面临着投资成本高、稳定性较差、容易发生浓差极化等挑战;最后在膜堆构造优化、多过程耦合以及工业化制膜等方面进行了展望。
中图分类号:
闫军营, 王皝莹, 李瑞瑞, 符蓉, 蒋晨啸, 汪耀明, 徐铜文. 选择性电渗析:机遇与挑战[J]. 化工学报, 2023, 74(1): 224-236.
Junying YAN, Huangying WANG, Ruirui LI, Rong FU, Chenxiao JIANG, Yaoming WANG, Tongwen XU. Selective electrodialysis: opportunities and challenges[J]. CIESC Journal, 2023, 74(1): 224-236.
项目 | ED | SED | NF | RO |
---|---|---|---|---|
主要用途 | 盐浓缩、脱盐 | 一/多价离子分离、浓缩 | 一/多价离子分离 | 有机物和微生物脱除、脱盐 |
驱动力 | 电势差 | 电势差 | 压力差 | 压力差 |
操作压力 | 低 | 低 | 高 | 高 |
膜污染 | 低 | 低 | 高 | 低 |
投资成本 | 较高 | 高 | 较低 | 高 |
优势 | 高倍率浓缩 | 分盐+一价盐高倍浓缩 | 分盐,技术成熟 | 离子去除率高,技术成熟 |
劣势 | 不能分盐 | 投资成本高 | 不能实现同时分盐和一价盐浓缩 | 抗污染能力差,水回收率低 |
表1 典型膜分离技术对比
Table 1 Comparison of typical membrane separation technology
项目 | ED | SED | NF | RO |
---|---|---|---|---|
主要用途 | 盐浓缩、脱盐 | 一/多价离子分离、浓缩 | 一/多价离子分离 | 有机物和微生物脱除、脱盐 |
驱动力 | 电势差 | 电势差 | 压力差 | 压力差 |
操作压力 | 低 | 低 | 高 | 高 |
膜污染 | 低 | 低 | 高 | 低 |
投资成本 | 较高 | 高 | 较低 | 高 |
优势 | 高倍率浓缩 | 分盐+一价盐高倍浓缩 | 分盐,技术成熟 | 离子去除率高,技术成熟 |
劣势 | 不能分盐 | 投资成本高 | 不能实现同时分盐和一价盐浓缩 | 抗污染能力差,水回收率低 |
膜类型 | 名称 | 电阻/ (Ω·cm2) | 破裂强度/ MPa | 厚度/mm | 离子交换容量/ (mmol·g-1) | 迁移数/% | 厂家 |
---|---|---|---|---|---|---|---|
一/二价阳离子交换膜 | CIMS | 1.8 | ≥0.1 | 0.15 | — | — | Astom, Japan |
CSO | 2.3 | — | 0.1 | 1.4~1.7 | >97 | AGC Engineering, Japan | |
PC-MVK | — | ≥0.3 | 0.1 | — | >97 | PCA GmbH, Germany | |
K-102 | 1.8~2.3 | — | 0.21~0.23 | 1.8~2.0 | >99 | Asahi Chemical, Japan | |
一/二价阴离子交换膜 | ACS | 3.8 | ≥0.25 | 0.13 | — | — | Astom, Japan |
ASV | 4.0 | ≥0.2 | 0.1 | 1.8~2.2 | >95 | AGC Engineering, Japan | |
PC-MVA | 20 | ≥0.2 | 0.11 | — | >97 | PCA GmbH, Germany | |
A-102 | 1.7~2.1 | — | 0.13~0.15 | 1.8~1.9 | >99 | Asahi Chemical, Japan |
表2 商业一/二价交换膜详细规格
Table 2 The properties of commercial mono/divalent ion exchange membranes
膜类型 | 名称 | 电阻/ (Ω·cm2) | 破裂强度/ MPa | 厚度/mm | 离子交换容量/ (mmol·g-1) | 迁移数/% | 厂家 |
---|---|---|---|---|---|---|---|
一/二价阳离子交换膜 | CIMS | 1.8 | ≥0.1 | 0.15 | — | — | Astom, Japan |
CSO | 2.3 | — | 0.1 | 1.4~1.7 | >97 | AGC Engineering, Japan | |
PC-MVK | — | ≥0.3 | 0.1 | — | >97 | PCA GmbH, Germany | |
K-102 | 1.8~2.3 | — | 0.21~0.23 | 1.8~2.0 | >99 | Asahi Chemical, Japan | |
一/二价阴离子交换膜 | ACS | 3.8 | ≥0.25 | 0.13 | — | — | Astom, Japan |
ASV | 4.0 | ≥0.2 | 0.1 | 1.8~2.2 | >95 | AGC Engineering, Japan | |
PC-MVA | 20 | ≥0.2 | 0.11 | — | >97 | PCA GmbH, Germany | |
A-102 | 1.7~2.1 | — | 0.13~0.15 | 1.8~1.9 | >99 | Asahi Chemical, Japan |
膜类型 | 自制膜 | 分离体系 | 电流密度/ (mA·cm-2) | 商业膜 | 选择性 (自制膜/商业膜) | 通量/ (mmol·(m2·s)-1) | 文献 |
---|---|---|---|---|---|---|---|
一/多价阳离子交换膜 | SCEM | 0.02 mol·L-1 Na+/Mg2+ | 5 | CIMS | 1.64/1.51 | [ | |
PANi | 0.05 mol·L-1 Na+/Mg2+ | 5.1 | CIMS | 4.1/3.56 | [ | ||
PPy | 0.05 mol·L-1 Na+/Mg2+ | 5.1 | CIMS | 12.95/2.46 | [ | ||
ICM | 0.1 mol·L-1 K+/Mg2+ | 20 | CIMS | 7.91/— | [ | ||
EDNF | 0.46/0.052 mol·L-1 Na+/Mg2+ | 20 | CSO | 7.0/4.0 | [ | ||
ENF | 0.1 mol·L-1 Li+/Mg2+ | 10 | CSO | 11.3/1.62 | [ | ||
NQS | 0.1 mol·L-1 Na+/Mg2+ | 14 | CSO | 1.6/1.55 | [ | ||
MCPM | 0.1 mol·L-1 Na+/Mg2+ | 14 | CSO | 3.3/1.7 | [ | ||
MCMX | 0.1 mol·L-1 Na+/Mg2+ | 5 | CIMS | 35.13/— | [ | ||
PDA-mil | 0.34/0.021 mol·L-1 Na+/Mg2+ | 恒压-20 V | — | 3.3/— | [ | ||
Modified SPPO | 0.46/0.052 mol·L-1Na+/Mg2+ | 20 | CSO | 15.5/2.58 | [ | ||
一/多价阴离子交换膜 | MAEM | 0.1 mol·L-1 Cl-/SO | 20 | ACS | 52.44/— | [ | |
PAES | 0.05 mol·L-1 Cl-/SO | 5 | ACS | 12.5/5.27 | [ | ||
S-rGO | 0.05 mol·L-1 Cl-/SO | 5 | — | 2.25/— | — | [ |
表3 国产一/二价离子膜详细规格
Table3 The properties of domestic mono/divalent ion exchange membranes
膜类型 | 自制膜 | 分离体系 | 电流密度/ (mA·cm-2) | 商业膜 | 选择性 (自制膜/商业膜) | 通量/ (mmol·(m2·s)-1) | 文献 |
---|---|---|---|---|---|---|---|
一/多价阳离子交换膜 | SCEM | 0.02 mol·L-1 Na+/Mg2+ | 5 | CIMS | 1.64/1.51 | [ | |
PANi | 0.05 mol·L-1 Na+/Mg2+ | 5.1 | CIMS | 4.1/3.56 | [ | ||
PPy | 0.05 mol·L-1 Na+/Mg2+ | 5.1 | CIMS | 12.95/2.46 | [ | ||
ICM | 0.1 mol·L-1 K+/Mg2+ | 20 | CIMS | 7.91/— | [ | ||
EDNF | 0.46/0.052 mol·L-1 Na+/Mg2+ | 20 | CSO | 7.0/4.0 | [ | ||
ENF | 0.1 mol·L-1 Li+/Mg2+ | 10 | CSO | 11.3/1.62 | [ | ||
NQS | 0.1 mol·L-1 Na+/Mg2+ | 14 | CSO | 1.6/1.55 | [ | ||
MCPM | 0.1 mol·L-1 Na+/Mg2+ | 14 | CSO | 3.3/1.7 | [ | ||
MCMX | 0.1 mol·L-1 Na+/Mg2+ | 5 | CIMS | 35.13/— | [ | ||
PDA-mil | 0.34/0.021 mol·L-1 Na+/Mg2+ | 恒压-20 V | — | 3.3/— | [ | ||
Modified SPPO | 0.46/0.052 mol·L-1Na+/Mg2+ | 20 | CSO | 15.5/2.58 | [ | ||
一/多价阴离子交换膜 | MAEM | 0.1 mol·L-1 Cl-/SO | 20 | ACS | 52.44/— | [ | |
PAES | 0.05 mol·L-1 Cl-/SO | 5 | ACS | 12.5/5.27 | [ | ||
S-rGO | 0.05 mol·L-1 Cl-/SO | 5 | — | 2.25/— | — | [ |
1 | Kim N, Su X, Kim C. Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction[J]. Chemical Engineering Journal, 2021, 420: 127715. |
2 | 董婷. 电流密度与离子浓度影响下电渗析中选择性分离单价/二价阳离子的过程解析与优化[D]. 重庆: 重庆大学, 2021. |
Dong T. Process analysis and optimization of selective separation of mon-/di-valent cations in electrodialysis under the influence of current density and ion concentration[D]. Chongqing: Chongqing University, 2021. | |
3 | Sadrzadeh M, Mohammadi T. Sea water desalination using electrodialysis[J]. Desalination, 2008, 221(1/2/3): 440-447. |
4 | Xu T W, Huang C H. Electrodialysis-based separation technologies: a critical review[J]. AIChE Journal, 2008, 54(12): 3147-3159. |
5 | Huang C H, Xu T W, Zhang Y P, et al. Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments[J]. Journal of Membrane Science, 2007, 288(1/2): 1-12. |
6 | Zhang Y, Paepen S, Pinoy L, et al. Selectrodialysis: fractionation of divalent ions from monovalent ions in a novel electrodialysis stack[J]. Separation and Purification Technology, 2012, 88: 191-201. |
7 | Xu T T, Wu B, Hou L X, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels[J]. Journal of the American Chemical Society, 2022, 144(23): 10220-10229. |
8 | Sheng F M, Wu B, Li X Y, et al. Efficient ion sieving in covalent organic framework membranes with sub-2-nanometer channels[J]. Advanced Materials, 2021, 33(44): e2104404. |
9 | Sata T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis—effect of hydrophilicity of anion exchange membranes on permselectivity of anions[J]. Journal of Membrane Science, 2000, 167(1): 1-31. |
10 | Sata T, Sata T, Yang W. Studies on cation-exchange membranes having permselectivity between cations in electrodialysis[J]. Journal of Membrane Science, 2002, 206(1/2): 31-60. |
11 | Besha A T, Tsehaye M T, Aili D, et al. Design of monovalent ion selective membranes for reducing the impacts of multivalent ions in reverse electrodialysis[J]. Membranes, 2019, 10(1): 7. |
12 | Ge L, Wu L, Wu B, et al. Preparation of monovalent cation selective membranes through annealing treatment[J]. Journal of Membrane Science, 2014, 459: 217-222. |
13 | Galama A H, Daubaras G, Burheim O S, et al. Fractioning electrodialysis: a current induced ion exchange process[J]. Electrochimica Acta, 2014, 136: 257-265. |
14 | White N, Bruening M, Mmisovich M. Highly selective cation separations in electrodialysis through cation-exchange membranes coated with polyelectrolyte multilayers[J]. Abstracts of Papers of the American Chemical Society, 2015, 249. |
15 | White N, Misovich M, Alemayehu E, et al. Highly selective separations of multivalent and monovalent cations in electrodialysis through Nafion membranes coated with polyelectrolyte multilayers[J]. Polymer, 2016, 103: 478-485. |
16 | Cheng C, White N, Shi H, et al. Cation separations in electrodialysis through membranes coated with polyelectrolyte multilayers[J]. Polymer, 2014, 55(6): 1397-1403. |
17 | Vaselbehagh M, Karkhanechi H, Takagi R, et al. Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis—experimental verification of theoretical predictions[J]. Journal of Membrane Science, 2015, 490: 301-310. |
18 | Zhao Y, Zhu J J, Ding J C, et al. Electric-pulse layer-by-layer assembled of anion exchange membrane with enhanced monovalent selectivity[J]. Journal of Membrane Science, 2018, 548: 81-90. |
19 | Jiang W B, Lin L, Xu X S, et al. Physicochemical and electrochemical characterization of cation-exchange membranes modified with polyethyleneimine for elucidating enhanced monovalent permselectivity of electrodialysis[J]. Journal of Membrane Science, 2019, 572: 545-556. |
20 | Pan J F, Ding J C, Tan R Q, et al. Preparation of a monovalent selective anion exchange membrane through constructing a covalently crosslinked interface by electro-deposition of polyethyleneimine[J]. Journal of Membrane Science, 2017, 539: 263-272. |
21 | Amara M, Kerdjoudj H. Modification of cation-exchange membrane properties by electro-adsorption of polyethyleneimine[J]. Desalination, 2003, 155(1): 79-87. |
22 | Ying J D, Lin Y Q, Zhang Y R, et al. Layer-by-layer assembly of cation exchange membrane for highly efficient monovalent ion selectivity[J]. Chemical Engineering Journal, 2022, 446: 137076. |
23 | Farrokhzad H, Darvishmanesh S, Genduso G, et al. Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline[J]. Electrochimica Acta, 2015, 158: 64-72. |
24 | Gohil G S, Binsu V V, Shahi V K. Preparation and characterization of mono-valent ion selective polypyrrole composite ion-exchange membranes[J]. Journal of Membrane Science, 2006, 280(1/2): 210-218. |
25 | Tufa R A, Piallat T, Hnát J, et al. Salinity gradient power reverse electrodialysis: cation exchange membrane design based on polypyrrole-chitosan composites for enhanced monovalent selectivity[J]. Chemical Engineering Journal, 2020, 380: 122461. |
26 | Farrokhzad H, Moghbeli M R, Gerven T V, et al. Surface modification of composite ion exchange membranes by polyaniline[J]. Reactive and Functional Polymers, 2015, 86: 161-167. |
27 | Sivaraman P, Chavan J G, Thakur A P, et al. Electrochemical modification of cation exchange membrane with polyaniline for improvement in permselectivity[J]. Electrochimica Acta, 2007, 52(15): 5046-5052. |
28 | Hou L X, Wu B, Yu D B, et al. Asymmetric porous monovalent cation perm-selective membranes with an ultrathin polyamide selective layer for cations separation[J]. Journal of Membrane Science, 2018, 557: 49-57. |
29 | Liao J B, Yu X Y, Pan N X, et al. Amphoteric ion-exchange membranes with superior mono-/bi-valent anion separation performance for electrodialysis applications[J]. Journal of Membrane Science, 2019, 577: 153-164. |
30 | Zhao Y, Tang K N, Ruan H M, et al. Sulfonated reduced graphene oxide modification layers to improve monovalent anions selectivity and controllable resistance of anion exchange membrane[J]. Journal of Membrane Science, 2017, 536: 167-175. |
31 | Wang W G, Liu R, Tan M, et al. Evaluation of the ideal selectivity and the performance of selectrodialysis by using TFC ion exchange membranes[J]. Journal of Membrane Science, 2019, 582: 236-245. |
32 | Pang X, Tao Y Y, Xu Y Q, et al. Enhanced monovalent selectivity of cation exchange membranes via adjustable charge density on functional layers[J]. Journal of Membrane Science, 2020, 595: 117544. |
33 | Pang X, Yu X H, He Y B, et al. Preparation of monovalent cation perm-selective membranes by controlling surface hydration energy barrier[J]. Separation and Purification Technology, 2021, 270: 118768. |
34 | Zhang Y R, Lin Y Q, Ying J D, et al. Highly efficient monovalent ion transport enabled by ionic crosslinking-induced nanochannels[J]. AIChE Journal, 2022, 68(11): e17825. |
35 | Ge L, Wu B, Li Q H, et al. Electrodialysis with nanofiltration membrane (EDNF) for high-efficiency cations fractionation[J]. Journal of Membrane Science, 2016, 498: 192-200. |
36 | Sheng F M, Hou L X, Wang X X, et al. Electro-nanofiltration membranes with positively charged polyamide layer for cations separation[J]. Journal of Membrane Science, 2020, 594: 117453. |
37 | Hou L X, Pan J F, Yu D B, et al. Nanofibrous composite membranes (NFCMs) for mono/divalent cations separation[J]. Journal of Membrane Science, 2017, 528: 243-250. |
38 | Zhang D Y, Jiang C X, Li Y Y, et al. Electro-driven in situ construction of functional layer using amphoteric molecule: the role of tryptophan in ion sieving[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 36626-36637. |
39 | Li J, Zhu J Y, Yuan S S, et al. Mussel-inspired monovalent selective cation exchange membranes containing hydrophilic MIL53(Al) framework for enhanced ion flux[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6275-6283. |
40 | Shehzad M A, Wang Y M, Yasmin A, et al. Biomimetic nanocones that enable high ion permselectivity[J]. Angewandte Chemie International Edition, 2019, 58(36): 12646-12654. |
41 | Jiang C X, Zhang D Y, Muhammad A S, et al. Fouling deposition as an effective approach for preparing monovalent selective membranes[J]. Journal of Membrane Science, 2019, 580: 327-335. |
42 | Zhang W, Miao M J, Pan J F, et al. Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes[J]. Desalination, 2017, 411: 28-37. |
43 | Galama A H, Daubaras G, Burheim O S, et al. Seawater electrodialysis with preferential removal of divalent ions[J]. Journal of Membrane Science, 2014, 452: 219-228. |
44 | Tran A T K, Zhang Y, Lin J Y, et al. Phosphate pre-concentration from municipal wastewater by selectrodialysis: effect of competing components[J]. Separation and Purification Technology, 2015, 141: 38-47. |
45 | Tran A T K, Zhang Y, de Corte D, et al. P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process[J]. Journal of Cleaner Production, 2014, 77: 140-151. |
46 | Zhang Y, Desmidt E, van Looveren A, et al. Phosphate separation and recovery from wastewater by novel electrodialysis[J]. Environmental Science & Technology, 2013, 47(11): 5888-5895. |
47 | Ahdab Y D, Rehman D, Lienhard J H V. Brackish water desalination for greenhouses: improving groundwater quality for irrigation using monovalent selective electrodialysis reversal[J]. Journal of Membrane Science, 2020, 610: 118072. |
48 | Zhang X C, Wang J, Ji Z Y, et al. Preparation of Li2CO3 from high Mg2+/Li+ brines based on selective-electrodialysis with feed and bleed mode[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106635. |
49 | Yan J Y, Wang H Y, Fu R, et al. Ion exchange membranes for acid recovery: diffusion dialysis (DD) or selective electrodialysis (SED)? [J]. Desalination, 2022, 531: 115690. |
50 | Hussain A, Yan H Y, Ul Afsar N, et al. Acid recovery from molybdenum metallurgical wastewater via selective electrodialysis and nanofiltration[J]. Separation and Purification Technology, 2022, 295: 121318. |
51 | Reig M, Vecino X, Valderrama C, et al. Application of selectrodialysis for the removal of As from metallurgical process waters: recovery of Cu and Zn[J]. Separation and Purification Technology, 2018, 195: 404-412. |
52 | Nie X Y, Sun S Y, Song X F, et al. Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis[J]. Journal of Membrane Science, 2017, 530: 185-191. |
53 | Cohen B, Lazarovitch N, Gilron J. Upgrading groundwater for irrigation using monovalent selective electrodialysis[J]. Desalination, 2018, 431: 126-139. |
54 | Qiu Y B, Yao L, Tang C, et al. Integration of selectrodialysis and selectrodialysis with bipolar membrane to salt lake treatment for the production of lithium hydroxide[J]. Desalination, 2019, 465: 1-12. |
55 | Campione A, Gurreri L, Ciofalo M, et al. Electrodialysis for water desalination: a critical assessment of recent developments on process fundamentals, models and applications[J]. Desalination, 2018, 434: 121-160. |
56 | 张维润, 樊雄. 电渗析浓缩海水制盐[J]. 水处理技术, 2009, 35(2): 1-4. |
Zhang W R, Fan X. Salt making from sea water by electrodialysis concentration[J]. Technology of Water Treatment, 2009, 35(2): 1-4. | |
57 | van der Bruggen B V, Koninckx A, Vandecasteele C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration[J]. Water Research, 2004, 38(5): 1347-1353. |
58 | Yan J Y, Yan H Y, Wang H Y, et al. Bipolar membrane electrodialysis for clean production of L‐10 camphorsulfonic acid: from laboratory to industrialization[J]. AlChE Journal, 2021, 68(2). |
59 | Wang Y M, Wang X L, Yan H Y, et al. Bipolar membrane electrodialysis for cleaner production of N-methylated glycine derivative amino acids[J]. AIChE Journal, 2020, 66(11). |
60 | Xu T W, Yang W H. Effect of cell configurations on the performance of citric acid production by a bipolar membrane electrodialysis[J]. Journal of Membrane Science, 2002, 203(1/2): 145-153. |
61 | Reig M, Valderrama C, Gibert O, et al. Selectrodialysis and bipolar membrane electrodialysis combination for industrial process brines treatment: monovalent-divalent ions separation and acid and base production[J]. Desalination, 2016, 399: 88-95. |
62 | Brover S, Lester Y, Brenner A, et al. Optimization of ultrafiltration as pre-treatment for seawater RO desalination[J]. Desalination, 2022, 524: 115478. |
63 | Park D J, Supekar O D, Greenberg A R, et al. Real-time monitoring of calcium sulfate scale removal from RO desalination membranes using Raman spectroscopy[J]. Desalination, 2021, 497: 114736. |
64 | Shakib S E, Amidpour M, Boghrati M, et al. New approaches to low production cost and low emissions through hybrid MED-TVC+RO desalination system coupled to a gas turbine cycle[J]. Journal of Cleaner Production, 2021, 295: 126402. |
65 | He L, Jiang A P, Huang Q Y, et al. Modeling and structural optimization of MSF-RO desalination system[J]. Membranes, 2022, 12(6): 545. |
66 | Persico M, Mikhaylin S, Doyen A, et al. Prevention of peptide fouling on ion-exchange membranes during electrodialysis in overlimiting conditions[J]. Journal of Membrane Science, 2017, 543: 212-221. |
67 | Hashaikeh R, Lalia B S, Kochkodan V, et al. A novel in situ membrane cleaning method using periodic electrolysis[J]. Journal of Membrane Science, 2014, 471: 149-154. |
68 | Liu R D, Wang Y K, Wu G, et al. Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment[J]. Chemical Engineering Journal, 2017, 322: 224-233. |
69 | Ye Z L, Ghyselbrecht K, Monballiu A, et al. Fractionating various nutrient ions for resource recovery from swine wastewater using simultaneous anionic and cationic selective-electrodialysis[J]. Water Research, 2019, 160: 424-434. |
70 | Gueccia R, Aguirre A R, Randazzo S, et al. Diffusion dialysis for separation of hydrochloric acid, iron and zinc ions from highly concentrated pickling solutions[J]. Membranes, 2020, 10(6): 129. |
71 | Gueccia R, Randazzo S, Martino D C, et al. Experimental investigation and modeling of diffusion dialysis for HCl recovery from waste pickling solution[J]. Journal of Environmental Management, 2019, 235: 202-212. |
72 | Yan H Y, Xu C Y, Wu Y H, et al. Integrating diffusion dialysis with membrane electrolysis for recovering sodium hydroxide from alkaline sodium metavanadate solution[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5382-5393. |
73 | Zhuang J X, Chen Q, Wang S, et al. Zero discharge process for foil industry waste acid reclamation: coupling of diffusion dialysis and electrodialysis with bipolar membranes[J]. Journal of Membrane Science, 2013, 432: 90-96. |
74 | Zhang X, Li C R, Wang X L, et al. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foils wastewater: an integration of diffusion dialysis and conventional electrodialysis[J]. Journal of Membrane Science, 2012, 409/410: 257-263. |
75 | Li W, Zhang Y M, Huang J, et al. Separation and recovery of sulfuric acid from acidic vanadium leaching solution by diffusion dialysis[J]. Separation and Purification Technology, 2012, 96: 44-49. |
76 | Zhang X, Li C R, Wang H C, et al. Recovery of hydrochloric acid from simulated chemosynthesis aluminum foil wastewater by spiral wound diffusion dialysis (SWDD) membrane module[J]. Journal of Membrane Science, 2011, 384(1/2): 219-225. |
77 | Luo J Y, Wu C M, Xu T W, et al. Diffusion dialysis—concept, principle and applications[J]. Journal of Membrane Science, 2011, 366(1/2): 1-16. |
78 | Luo J Y, Wu C M, Wu Y H, et al. Diffusion dialysis processes of inorganic acids and their salts: the permeability of different acidic anions[J]. Separation and Purification Technology, 2011, 78(1): 97-102. |
79 | Xu J, Lu S G, Fu D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis[J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 832-837. |
80 | Palatý Z, Žáková A. Separation of HCl+NiCl2 mixture by diffusion dialysis[J]. Separation Science and Technology, 2007, 42(9): 1965-1983. |
81 | Somrani A, Hamzaoui A H, Pontie M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO)[J]. Desalination, 2013, 317: 184-192. |
82 | Ledingham J, Sedransk C K L, In’t Veen B, et al. Barriers to electrodialysis implementation: maldistribution and its impact on resistance and limiting current density[J]. Desalination, 2022, 531: 115691. |
83 | Sun S Y, Cai L J, Nie X Y, et al. Separation of magnesium and lithium from brine using a Desal nanofiltration membrane[J]. Journal of Water Process Engineering, 2015, 7: 210-217. |
84 | Wen X M, Ma P H, Zhu C L, et al. Preliminary study on recovering lithium chloride from lithium-containing waters by nanofiltration[J]. Separation and Purification Technology, 2006, 49(3): 230-236. |
85 | 黄清波, 刘公平, 金万勤. 一/二价离子分离膜材料研究进展[J]. 化工学报, 2021, 72(1): 334-350. |
Huang Q B, Liu G P, Jin W Q. Recent progress of membrane materials for mono-/ di-valent ions separation[J]. CIESC Journal, 2021, 72(1): 334-350. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[3] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[4] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[9] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[10] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[11] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[12] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[13] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[14] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
[15] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 337
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 626
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||