化工学报 ›› 2018, Vol. 69 ›› Issue (6): 2551-2559.DOI: 10.11949/j.issn.0438-1157.20171286

• 过程系统工程 • 上一篇    下一篇

基于集成学习的多产品化工过程软测量建模方法

邵伟明1,2, 田学民3, 宋执环1,2   

  1. 1. 工业控制技术国家重点实验室, 浙江 杭州 310027;
    2. 浙江大学控制科学与工程学院, 浙江 杭州 310027;
    3. 中国石油大学信息与控制工程学院, 山东 青岛 266580
  • 收稿日期:2017-09-25 修回日期:2018-01-04 出版日期:2018-06-05 发布日期:2018-06-05
  • 通讯作者: 宋执环
  • 基金资助:

    国家重点研发计划重点专项项目(2017YFB0304203);国家自然科学基金项目(61703367)。

Ensemble learning-based soft sensor method for multi-product chemical processes

SHAO Weiming1,2, TIAN Xuemin3, SONG Zhihuan1,2   

  1. 1. State Key Laboratory of Industrial Control Technology, Hangzhou 310027, Zhejiang, China;
    2. College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China;
    3. College of Information and Control Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2017-09-25 Revised:2018-01-04 Online:2018-06-05 Published:2018-06-05
  • Supported by:

    supported by the National Key Research and Development Program of China (2017YFB0304203) and the National Natural Science Foundation of China (61703367).

摘要:

化工过程通常具有非线性、时变以及多产品等特性。针对上述特点,在集成学习框架下建立自适应软测量模型。首先,面向具有多个产品的化工对象,借助k近邻法,以统计假设检验理论为依据,提出一种自适应局部化方法,获得多样性程度高的局部模型集合。然后,根据未知样本量化局部模型的泛化能力,通过选择性集成方法获得主导变量的估计值。此外,为了对主导变量估计值的精度进行评估,基于局部模型泛化误差,给出一种通用性高的模型性能评价方法。在仿真的盘尼西林生产过程上的运行结果验证了所提方法的有效性。

关键词: 化工过程, 多产品, 软测量, 集成学习, 模型性能评价

Abstract:

To handle characteristics of nonlinearity, time-variation and multi-product of chemical processes, a self-adaptive soft sensing method was developed under ensemble learning framework. Initially, a self-adaptive localization technique was proposed to construct ensemble of high diversified local models by statistical hypothesis testing theory and k-nearest neighbor method. Subsequently, based on generalization capabilities of quantified local models with online query sample, primary process variables were estimated through selective ensemble learning. Furthermore, in order to measure estimation accuracy of primary process variables, a highly universal method of model performance assessment was presented by using local model's generalization error. Simulation study on a penicillin fermentation process demonstrated effectiveness of the proposed method.

Key words: chemical processes, multi-product, soft sensor, ensemble learning, model performance assessment

中图分类号: