[1] |
KADLEC P, GABRYS B, STRANDT S. Data-driven soft sensors in process industry[J]. Computers and Chemical Engineering, 2009, 33(4):795-814.
|
[2] |
KANO M, FUJIWARA K. Virtual sensing technology in process industries:trends and challenges revealed by recent industrial application[J]. Journal of Chemical Engineering of Japan, 2013, 46(1):1-17.
|
[3] |
邵伟明, 田学民, 王平. 基于递推PLS核算法的软测量在线学习方法[J]. 化工学报, 2012, 63(9):2887-2891. SHAO W M, TIAN X M, WANG P. Online learning soft sensor method based on recursive kernel algorithm for PLS[J]. CIESC Journal, 2012, 63(9):2887-2891.
|
[4] |
曹鹏飞, 罗雄麟. 化工过程软测量建模方法研究进[J]. 化工学报, 2013, 64(3):788-800. CAO P F, LUO X L. Modeling of soft sensor for chemical process[J]. CIESC Journal, 2013, 64(3):788-800.
|
[5] |
KADLEC P, GRBI? R, GABRYS B. Review of adaptation mechanisms for data-driven soft sensors[J]. Computers and Chemical Engineering, 2011, 35(1):1-24.
|
[6] |
袁晓锋, 葛志强, 宋执环. 基于时间差分和局部加权偏最小二乘法的过程自适应软测量建模[J]. 化工学报, 2016, 67(3):724-728. YUAN X F, GE Z Q, SONG Z H. Adaptive soft sensor based on time difference model and locally weighted partial least squares regression[J]. CIESC Journal, 2016, 67(3):724-728.
|
[7] |
李春义, 袁起民, 陈小博, 等. 两段提升管催化裂解多产丙烯研究[J]. 中国石油大学学报(自然科学版), 2007, 31(1):118-121. LI C Y, YUAN Q M, CHEN X B, et al. Maximizing yield of propylene by two-stage riser catalytic pyrolysis of heavy oil[J]. Journal of China University of Petroleum (Natural Science Edition), 2007, 31(1):118-121.
|
[8] |
SHAO W M, TIAN X M. Adaptive soft sensor for quality prediction of chemical processes based on selective ensemble of local partial least squares models[J]. Chemical Engineering Research & Design, 2015, 95:113-132.
|
[9] |
KANO M, OGAWA M. The state of the art in chemical process control in Japan:good practice and questionnaire survey[J]. Journal of Process Control, 2010, 20(9):969-982.
|
[10] |
钟伟民, 李杰, 程辉, 等. 基于FCM聚类的气化炉温度多模型软测量建模[J]. 化工学报, 2012, 63(12):3951-3955. ZHONG W M, LI J, CHENG H, et al. A soft sensor multi-modeling for furnace temperature of gasifier based FCM clustering[J]. CIESC Journal, 2012, 63(12):3951-3955.
|
[11] |
LIU Y, LI C, GAO Z. A novel unified correlation model using ensemble support vector regression for prediction of flooding velocity in randomly packed towers[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(3):1109-1118.
|
[12] |
LI X L, SU H Y, CHU J. Multiple model soft sensor based on affinity propagation, gaussian process and Bayesian committee machine[J]. Chinese Journal of Chemical Engineering, 2009, 17(1):95-99.
|
[13] |
李琨, 韩莹, 黄海礁. 基于自动谱聚类与多极端学习机模型的油井油液含水率软测量[J]. 化工学报, 2016, 67(7):2925-2933. LI K, HAN Y, HUANG H J. Soft sensor method for moisture content of well oil based on automatic spectral clustering and multiple extreme learning[J]. CIESC Journal, 2016, 67(7):2925-2933.
|
[14] |
JIN X, WANG S, HUANG B, et al. Multiple model based LPV soft sensor development with irregular/missing process output measurement[J]. Control Engineering Practice, 2012, 20(2):165-172.
|
[15] |
KADLEC P, GABRYS B. Local learning-based adaptive soft sensor for catalyst activation prediction[J]. AIChE Journal, 2011, 57(5):1288-1301.
|
[16] |
SHAO W M, TIAN X M, WANG P. Soft sensor development for nonlinear and time-varying processes based on supervised ensemble learning with improved process state partition[J]. Asia-Pacific Journal of Chemical Engineering, 2015, 10(2):282-296.
|
[17] |
NI W, TAN S K, NG W J, et al. Localized, adaptive recursive partial least squares regression for dynamic system modeling[J]. Industrial & Engineering Chemistry Research, 2012, 51(23):8025-8039.
|
[18] |
JIN H P, CHEN X G, WANG L, et al. Adaptive soft sensor development based on online ensemble Gaussian process regression for nonlinear time-varying batch processes[J]. Industrial & Engineering Chemistry Research, 2015, 54 (30):7320-7345.
|
[19] |
JIN H P, CHEN X G, WANG L, et al. Dual learning-based online ensemble regression approach for adaptive soft sensor modeling of nonlinear time-varying processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 151:228-244.
|
[20] |
LIU J L, CHEN D S, SHEN J F. Development of self-validating soft sensors using fast moving window partial least squares[J]. Industrial & Engineering Chemistry Research, 2010, 49(22):11530-11546.
|
[21] |
KANEKO H, ARAKAWA M, FUNATSU K. Applicability domains and accuracy of prediction of soft sensor models[J]. AIChE Journal, 2011, 57(6):1506-1513.
|
[22] |
KANEKO H, FUNATSU K. Applicability domain of soft sensor models based on one-class support vector machine[J]. AIChE Journal, 2013, 59(6):2046-2050.
|
[23] |
KANEKO H, FUNATSU K. Estimation of predictive accuracy of soft sensor models based on data density[J]. Chemometrics and Intelligent Laboratory Systems, 2013, 128(15):111-117.
|
[24] |
GE Z Q, CHEN T, SONG Z H. Quality prediction for polypropylene production process based on CLGPR model[J]. Control Engineering Practice, 2011, 19(5):423-432.
|
[25] |
YUAN X F, GE Z Q, SONG Z H. Locally weighted kernel principal component regression model for soft sensing of nonlinear and time-varying processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(35):19736-13749.
|
[26] |
YU J. Multiway Gaussian mixture model based adaptice kernel partialleast squares regression method for soft sensor estimation and quality prediction of nonlinear multi-phase batch processes[J]. Industrial & Engineering Chemistry Research, 2012, 51(40):13227-13237.
|
[27] |
LINDGREN F, GELADI F, WOLD S. The kernel algorithm for PLS[J]. Journal of Chemometrics, 1993, 7(1):45-59.
|
[28] |
QIN S. Recursive PLS algorithms for adaptive data modeling[J]. Computers & Chemical Engineering, 1998, 44(4/5):503-514.
|
[29] |
GE Z Q, SONG Z H. A comparative study of just-in-time-learning based methods for online soft sensor modeling[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 104(2):306-317.
|
[30] |
SUYKENS J A K, VAN GESTEL T, DE BRABANTER J, et al. Least Squares Support Vector Machines[M]. Singapore:World Scientific, 2002:98-100.
|