化工学报 ›› 2020, Vol. 71 ›› Issue (3): 1278-1287.DOI: 10.11949/0438-1157.20190934

• 过程系统工程 • 上一篇    下一篇

基于局部线性嵌入的测地线流式核多工况软测量建模方法

杜宇浩,阎高伟(),李荣,王芳   

  1. 太原理工大学电气与动力工程学院,山西 太原 030024
  • 收稿日期:2019-08-14 修回日期:2019-11-03 出版日期:2020-03-05 发布日期:2020-03-05
  • 通讯作者: 阎高伟
  • 基金资助:
    国家自然科学基金面上项目(61973226);山西省科技重大专项(20181102017);山西省重点研发计划项目(201903)

Multiple working conditions soft sensor modeling method of geodesic flow kernel based on locally linear embedding

Yuhao DU,Gaowei YAN(),Rong LI,Fang WANG   

  1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2019-08-14 Revised:2019-11-03 Online:2020-03-05 Published:2020-03-05
  • Contact: Gaowei YAN

摘要:

针对复杂工业过程在多工况条件下缺乏标记样本无法进行软测量建模,而原有模型失准问题,研究了一种局部线性嵌入(locally linear embedding, LLE)和测地线流式核(geodesic flow kernel, GFK)相结合的无监督软测量建模方法。该方法首先通过局部线性嵌入提取各个工况间的公共模式信息,然后将已知工况数据和未知工况数据的公共模式信息投影到流形空间,利用测地线流式核框架在流形空间上实现域迁移,以减小不同工况间数据的分布差异。最后用偏最小二乘回归法建立软测量模型,得到主导变量的软测量值。通过对TE过程中不同工况下的成分变量软测量和不同工况下的球磨机负荷参数软测量结果,验证了所提算法的实用性和有效性。

关键词: 迁移学习, 测地线流式核, 软测量, 算法, 预测, 过程控制

Abstract:

For the complex industrial process, the lack of labeled samples under multiple working conditions cannot be used for soft sensor modeling, and the original model is out of alignment. In this paper, an unsupervised soft sensor modeling method combining locally linear embedding (LLE) and geodesic flow kernel (GFK) is studied. The method firstly extracts the common feature between each working condition by locally linear embedding, and then projects the common feature of the known working condition data and the unknown working condition data into the manifold space, and uses the geodesic flow kernel frame on the manifold space for domain transfer. Finally, the soft-measurement model is established by partial least squares regression method, and the soft-measurement value of the dominant variable is obtained. The practicality and effectiveness of the proposed algorithm are verified by soft sensor of component variables under different working conditions in TE process and soft sensor results of ball mill load parameters under different working conditions.

Key words: transfer learning, geodesic flow kernel, soft sensor, algorithm, prediction, process control

中图分类号: