化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5696-5705.DOI: 10.11949/0438-1157.20200401
收稿日期:
2020-04-16
修回日期:
2020-07-11
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
王振雷
作者简介:
杨逸俊(1996—),男,硕士研究生,基金资助:
YANG Yijun1(),WANG Zhenlei1(),WANG Xin2
Received:
2020-04-16
Revised:
2020-07-11
Online:
2020-12-05
Published:
2020-12-05
Contact:
WANG Zhenlei
摘要:
软测量建模能够有效地解决生产过程中在线分析仪表测量滞后大、价格昂贵、维护保养复杂等问题。目前,基于数据驱动的神经网络是软测量建模的主要工具之一。而在建模数据的采集过程中,主导变量的采集相对辅助变量要困难得多,由此产生了大量缺失标签的数据。但传统的软测量建模方法却忽视了这些无标签数据,只利用少量的有标签数据建模,从而影响了模型的预测精度。为了解决标签缺失的问题,采用最近邻算法对无标签数据进行伪标记,同时设计了由卷积操作与门限循环单元神经网络(GRU)结合的网络结构来进一步利用无标签数据,提取不同时刻数据中的动态特征,提高神经网络的预测精度。最后将该方法应用于丙烯精馏塔塔顶丙烷浓度的预测,实验结果表明该模型能有效处理非线性动态系统的标签缺失问题,具有更高的预测精度。
中图分类号:
杨逸俊,王振雷,王昕. 基于最近邻与神经网络融合模型的软测量建模方法[J]. 化工学报, 2020, 71(12): 5696-5705.
YANG Yijun,WANG Zhenlei,WANG Xin. Soft sensor modeling method based on hybrid model of nearest neighbor and neural network[J]. CIESC Journal, 2020, 71(12): 5696-5705.
算法:KNN伪标记及组成新样本 |
---|
输入:有标签数据集 KNN算法中的参数K; 1. for j = 1 : u 2. for i = 1 : l 3. 计算{xj}与{xi}间的欧几里德距离Sji 4. end 5. 根据距离Sji的大小对有标签数据集Dl进行升序排列 6. 选取前K个有标签数据,记录其距离与标签信息 {s1,y1},…,{sK,yK} 7. for k = 1 : K 8. 9. end 10. 11. end 12. 得到伪标记数据集 输出:新数据集 |
表1 KNN的伪代码
Table 1 Pseudocode of KNN
算法:KNN伪标记及组成新样本 |
---|
输入:有标签数据集 KNN算法中的参数K; 1. for j = 1 : u 2. for i = 1 : l 3. 计算{xj}与{xi}间的欧几里德距离Sji 4. end 5. 根据距离Sji的大小对有标签数据集Dl进行升序排列 6. 选取前K个有标签数据,记录其距离与标签信息 {s1,y1},…,{sK,yK} 7. for k = 1 : K 8. 9. end 10. 11. end 12. 得到伪标记数据集 输出:新数据集 |
Model | MSE | MAE | MAPE |
---|---|---|---|
NARX | 3.1788 | 1.4757 | 219.5918 |
SVM | 0.6522 | 0.7681 | 133.9137 |
GRU | 0.0197 | 0.1083 | 15.0631 |
HNN | 0.0026 | 0.0396 | 6.4383 |
表2 四种模型的性能评估
Table 2 Performance evaluation of four models
Model | MSE | MAE | MAPE |
---|---|---|---|
NARX | 3.1788 | 1.4757 | 219.5918 |
SVM | 0.6522 | 0.7681 | 133.9137 |
GRU | 0.0197 | 0.1083 | 15.0631 |
HNN | 0.0026 | 0.0396 | 6.4383 |
Model | MSE | MAE | MAPE |
---|---|---|---|
NARX | 7.1124 | 7.0758 | 2.4195 |
SVM | 4.8657 | 4.7382 | 1.4910 |
GRU | 3.6935 | 4.6781 | 1.5813 |
HNN | 7.9529 | 1.9485 | 0.6479 |
表3 四种模型对丙烷浓度预测的性能评估
Table 3 Performance evaluation of four models for propane concentration prediction
Model | MSE | MAE | MAPE |
---|---|---|---|
NARX | 7.1124 | 7.0758 | 2.4195 |
SVM | 4.8657 | 4.7382 | 1.4910 |
GRU | 3.6935 | 4.6781 | 1.5813 |
HNN | 7.9529 | 1.9485 | 0.6479 |
1 | Qi Q, Hirai S, Ho V A. Wrinkled soft sensor with variable afferent morphology[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1908-1915. |
2 | Han S, Kim T, Kim D, et al. Use of deep learning for characterization of microfluidic soft sensors[J]. IEEE Robotics and Automation Letters, 2018, 3(2): 873-880. |
3 | Chamil A. Design and applications of soft sensors in polymer processing: a review[J]. IEEE Sensors Journal, 2019, 19(8): 2801-2813. |
4 | 刘剑, 张凌波, 王潇凌. 基于混沌菌群算法改进BP神经网络的焦炭塔生焦高度软测量建模[J]. 化工自动化及仪表, 2019, 46(10): 811-815+833. |
Liu J, Zhang L B, Wang X L. Soft sensor modeling of coke tower coke height based on improved BP neural network based on chaos flora algorithm [J]. Control and Instruments in Chemical Industry, 2019, 46 (10): 811-815 + 833. | |
5 | 李文静, 李萌, 乔俊飞. 基于互信息和自组织RBF神经网络的出水BOD软测量方法[J]. 化工学报, 2019, 70(2): 687-695. |
Li W J, Li M, Qiao J F. Soft sensing method of effluent BOD based on mutual information and self-organizing RBF neural network [J]. CIESC Journal, 2019, 70 (2): 687-695. | |
6 | 廉小亲, 王俐伟, 安飒, 等. 基于SOM-RBF神经网络的COD软测量方法[J]. 化工学报, 2019, 70(9): 3465-3472. |
Lian X Q, Wang L W, An S, et al. Soft sensing method of COD based on SOM-RBF neural network[J]. CIESC Journal, 2019, 70 (9): 3465-3472. | |
7 | Yan X F. Hybrid artificial neural network based on BP-PLSR and its application in development of soft sensors[J]. Chemometrics and Intelligent Laboratory Systems, 2010, 103(2): 152-159. |
8 | Wang Y, Chen C, Yan X F. Structure and weight optimization of neural network based on CPA-MLR and its application in naphtha dry point soft sensor[J]. Neural Computing and Applications, 2013, 22(1): 75-82. |
9 | Wang J S, Shen N N, Ren X D, et al. RBF neural network soft-sensor modeling of rotary kiln pellet quality indices optimized by biogeography-based optimization algorithm[J]. Journal of Chemical Engineering of Japan, 2015, 48(1): 7-15. |
10 | 李军, 桑桦. 基于SCKF的Elman递归神经网络在软测量建模中的应用[J]. 信息与控制, 2017, 46(3): 342-349+357. |
Li J, Sang H. Application of Elman recurrent neural network based on SCKF in soft sensor modeling [J]. Information and Control, 2017, 46 (3): 342-349 + 357. | |
11 | 谢一飞. 基于神经网络和支持向量机的蔗渣锅炉烟气氧含量软测量模型[D]. 南宁: 广西大学, 2016. |
Xie Y F. Soft sensing model of oxygen content in flue gas of bagasse boiler based on neural network and support vector machine[D]. Nanning: Guangxi University, 2016. | |
12 | 李丁园. 回声状态网络结构设计及应用研究[D]. 吉林: 吉林大学, 2019. |
Li D Y. Design and application of echo state network structure[D]. Jilin: Jilin University, 2019. | |
13 | 乔俊飞, 李瑞祥, 柴伟, 等. 基于PSO-ESN神经网络的污水BOD预测[J]. 控制工程, 2016, 23(4): 463-467. |
Qiao J F, Li R X, Chai W, et al. BOD prediction of sewage based on PSO-ESN neural network[J]. Control Engineering of China, 2016, 23 (4): 463-467. | |
14 | Luciano S, David A, Jose O, et al. Assessing the health of LiFePO4 traction batteries through monotonic echo state networks[J]. Sensors, 2018, 18(1): 9-16. |
15 | Antonelo E A, Camponogara E, Foss B. Echo-state networks for data-driven downhole pressure estimation in gas-lift oil wells[J]. Neural Networks, 2017, 85(1): 106-117. |
16 | Muhammad Q R, Nadarajah M, Li J, et al. Multivariate ensemble forecast framework for demand prediction of anomalous days[J]. IEEE Transactions on Sustainable Energy, 2020, 11(1): 27-36. |
17 | Sun W, Wang J. Elman neural network soft-sensor model of conversion velocity in polymerization process optimized by chaos whale optimization algorithm[J]. IEEE Access, 2017, 5: 13062-13076. |
18 | 耿志强, 徐猛, 朱群雄, 等. 基于深度学习的复杂化工过程软测量模型研究与应用[J]. 化工学报, 2019, 70(2): 564-571. |
Geng Z Q, Xu M, Zhu Q X, et al. Research and application of soft sensing model for complex chemical process based on deep learning[J]. CIESC Journal, 2019, 70 (2): 564-571. | |
19 | 伊金静. 基于深度学习的工业过程软测量[D]. 杭州: 浙江大学, 2019. |
Yi J J. Soft measurement of industrial process based on deep learning[D]. Hangzhou: Zhejiang University, 2019. | |
20 | Wang Y, Shen Y X, Mao S W, et al. LASSO and LSTM integrated temporal model for short-term solar intensity forecasting[J]. IEEE Internet of Things Journal, 2019, 6(2): 2933-2944. |
21 | Cheng Y W, Zhu H P, Wu J, et al. Machine health monitoring using adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 987-997. |
22 | Zhang Q, Li F, Long F, et al. Vehicle emission forecasting based on wavelet transform and long short-term memory network[J]. IEEE Access, 2018, 6: 56984-56994. |
23 | Qin D M, Yu J, Zou G J, et al. A novel combined prediction scheme based on CNN and LSTM for urban PM2. 5 concentration[J]. IEEE Access, 2019, 7: 20050-20059. |
24 | 邵伟明, 葛志强, 李浩, 等. 基于循环神经网络的半监督动态软测量建模方法[J]. 电子测量与仪器学报, 2019, 33(11): 7-13. |
Shao W M, Ge Z Q, Li H, et al. Modeling method of semi supervised dynamic soft measurement based on cyclic neural network [J]. Journal of Electronic Measurement and Instrumentation, 2019, 33 (11): 7-13. | |
25 | 熊伟丽, 薛明晨, 李妍君. 基于EM算法的半监督局部加权PLS在线建模方法[J]. 系统仿真学报, 2018, 30(1): 8-17. |
Xiong W L, Xue M C, Li Y J. Semi supervised partial weighted PLS online modeling method based on EM algorithm [J]. Journal of System Simulation, 2018, 30 (1): 8-17 | |
26 | 李浩. 基于深度学习的半监督软测量建模方法[D]. 杭州: 浙江大学, 2019. |
Li H. Modeling method of semi supervised soft sensing based on deep learning[D]. Hangzhou: Zhejiang University, 2019. | |
27 | Bao L, Yuan X, Ge Z. Co-training partial least squares model for semi-supervised soft sensor development[J]. Chemometrics & Intelligent Laboratory Systems, 2015, 147(5): 75-85. |
28 | Chen X J, Yuan G W, Nie F P, et al. Semi-supervised feature selection via sparse rescaled linear square regression[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(1): 165-176. |
29 | Ge Z, Huang B, Song Z. Nonlinear semisupervised principal component regression for soft sensor modeling and its mixture form[J]. Journal of Chemometrics, 2015, 28(11): 793-804. |
30 | Ersin Y, Dursun A. Estimation of right censored nonparametric regression solved by kNN imputation: a comparative study[J]. Turkiye Klinikleri Journal of Biostatistics, 2019, 11(2): 83-92. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[5] | 邵伟明, 韩文学, 宋伟, 杨勇, 陈灿, 赵东亚. 基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法[J]. 化工学报, 2023, 74(6): 2495-2502. |
[6] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[7] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[8] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[9] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
[10] | 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165. |
[11] | 王琨, 侍洪波, 谭帅, 宋冰, 陶阳. 局部时差约束邻域保持嵌入算法在故障检测中的应用[J]. 化工学报, 2022, 73(7): 3109-3119. |
[12] | 杨岭, 崔国民, 周志强, 肖媛. 精细搜索策略应用于质量交换网络综合[J]. 化工学报, 2022, 73(7): 3145-3155. |
[13] | 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672. |
[14] | 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646. |
[15] | 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||