化工学报 ›› 2020, Vol. 71 ›› Issue (11): 5226-5236.DOI: 10.11949/0438-1157.20200260
收稿日期:
2020-03-16
修回日期:
2020-06-29
出版日期:
2020-11-05
发布日期:
2020-11-05
通讯作者:
熊伟丽
作者简介:
代学志(1995—),男,硕士研究生,基金资助:
Received:
2020-03-16
Revised:
2020-06-29
Online:
2020-11-05
Published:
2020-11-05
Contact:
Weili XIONG
摘要:
为提高主动学习方法的运行效率和降低人工标记成本,提出一种基于核极限学习机的快速主动学习方法,并将其应用于软测量建模中。首先,采用核极限学习机对无标记样本进行信息评估,将无标记样本的置信度作为样本选择评价准则,选择对改善模型性能最有价值的无标记样本进行标记;其次,充分考虑每次迭代过程的运算信息,引入矩阵反演公式优化样本选择策略,提升迭代过程样本评估的运行效率;最后,应用矩阵相似度理论对迭代过程的已标记样本数据进行信息度量,并将其作为迭代终止依据,以最小的标记代价提升模型性能。将所提方法应用于硫回收过程H2S和SO2浓度软测量研究中,仿真结果表明:所提方法不仅标记代价小,而且提高了迭代的快速性,比较全面地提升了主动学习算法的性能。通过开展本研究工作,为少标记样本情况下的软测量技术应用提供了一种新方法。
中图分类号:
代学志,熊伟丽. 基于核极限学习机的快速主动学习方法及其软测量应用[J]. 化工学报, 2020, 71(11): 5226-5236.
Xuezhi DAI,Weili XIONG. A fast active learning method based on kernel extreme learning machine and its application for soft sensing[J]. CIESC Journal, 2020, 71(11): 5226-5236.
变量 | 描述 | 单位 |
---|---|---|
u1 | MEA_GAS气体流 | m3/s |
u2 | 初级空气流 | m3/s |
u3 | 二级空气流 | m3/s |
u4 | SWS区域气体流 | m3/s |
u5 | SWS区域气体流 | m3/s |
y1 | H2S浓度 | mol/m3 |
y2 | SO2浓度 | mol/m3 |
表1 SRU的过程变量描述
Table 1 Process variable description of SRU
变量 | 描述 | 单位 |
---|---|---|
u1 | MEA_GAS气体流 | m3/s |
u2 | 初级空气流 | m3/s |
u3 | 二级空气流 | m3/s |
u4 | SWS区域气体流 | m3/s |
u5 | SWS区域气体流 | m3/s |
y1 | H2S浓度 | mol/m3 |
y2 | SO2浓度 | mol/m3 |
迭代次数 | 性能指标 | Random | RSAL | DAL | Proposed |
---|---|---|---|---|---|
10 | 平均RMSE | 0.0633 | 0.0415 | 0.0456 | 0.0362 |
标准差/% | 1.29 | 0.628 | 0.756 | 0.169 | |
运行时间/s | — | 2.63 | 1.98 | 0.58 | |
20 | 平均RMSE | 0.0572 | 0.0320 | 0.0291 | 0.0282 |
标准差/% | 0.843 | 0.133 | 0.143 | 0.0920 | |
运行时间/s | — | 10.50 | 6.77 | 1.41 | |
30 | 平均RMSE | 0.0472 | 0.0294 | 0.0274 | 0.0263 |
标准差/% | 0.984 | 0.123 | 0.0852 | 0.0311 | |
运行时间/s | — | 28.68 | 13.39 | 3.40 | |
40 | 平均RMSE | 0.0418 | 0.0288 | 0.0264 | 0.0262 |
标准差/% | 1.20 | 0.144 | 0.0040 | 0.0229 | |
运行时间/s | — | 45.53 | 21.28 | 6.02 |
表2 四种主动学习方法在迭代过程中对H2S浓度预测的性能指标
Table 2 Performance index of four active learning methods for H2S concentration prediction in iterative process
迭代次数 | 性能指标 | Random | RSAL | DAL | Proposed |
---|---|---|---|---|---|
10 | 平均RMSE | 0.0633 | 0.0415 | 0.0456 | 0.0362 |
标准差/% | 1.29 | 0.628 | 0.756 | 0.169 | |
运行时间/s | — | 2.63 | 1.98 | 0.58 | |
20 | 平均RMSE | 0.0572 | 0.0320 | 0.0291 | 0.0282 |
标准差/% | 0.843 | 0.133 | 0.143 | 0.0920 | |
运行时间/s | — | 10.50 | 6.77 | 1.41 | |
30 | 平均RMSE | 0.0472 | 0.0294 | 0.0274 | 0.0263 |
标准差/% | 0.984 | 0.123 | 0.0852 | 0.0311 | |
运行时间/s | — | 28.68 | 13.39 | 3.40 | |
40 | 平均RMSE | 0.0418 | 0.0288 | 0.0264 | 0.0262 |
标准差/% | 1.20 | 0.144 | 0.0040 | 0.0229 | |
运行时间/s | — | 45.53 | 21.28 | 6.02 |
迭代次数 | 性能指标 | Random | RSAL | DAL | Proposed |
---|---|---|---|---|---|
10 | 平均RMSE | 0.0630 | 0.0562 | 0.0540 | 0.0488 |
标准差/% | 0.690 | 0.348 | 0.517 | 0.236 | |
运行时间/s | — | 2.56 | 2.08 | 0.650 | |
20 | 平均RMSE | 0.0572 | 0.0468 | 0.0416 | 0.0416 |
标准差/% | 0.668 | 0.440 | 0.123 | 0.169 | |
运行时间/s | — | 10.21 | 7.11 | 1.95 | |
30 | 平均RMSE | 0.0504 | 0.0402 | 0.0381 | 0.0374 |
标准差/% | 0.537 | 0.0788 | 0.0512 | 0.0541 | |
运行时间/s | — | 25.32 | 13.19 | 3.15 | |
40 | 平均RMSE | 0.0436 | 0.0381 | 0.0365 | 0.0363 |
标准差/% | 0.269 | 0.136 | 0.0444 | 0.0399 | |
运行时间/s | — | 46.67 | 21.38 | 5.82 |
表3 四种主动学习方法在迭代过程中对SO2浓度预测的性能指标
Table 3 Performance index of four active learning methods for SO2 concentration prediction in iterative process
迭代次数 | 性能指标 | Random | RSAL | DAL | Proposed |
---|---|---|---|---|---|
10 | 平均RMSE | 0.0630 | 0.0562 | 0.0540 | 0.0488 |
标准差/% | 0.690 | 0.348 | 0.517 | 0.236 | |
运行时间/s | — | 2.56 | 2.08 | 0.650 | |
20 | 平均RMSE | 0.0572 | 0.0468 | 0.0416 | 0.0416 |
标准差/% | 0.668 | 0.440 | 0.123 | 0.169 | |
运行时间/s | — | 10.21 | 7.11 | 1.95 | |
30 | 平均RMSE | 0.0504 | 0.0402 | 0.0381 | 0.0374 |
标准差/% | 0.537 | 0.0788 | 0.0512 | 0.0541 | |
运行时间/s | — | 25.32 | 13.19 | 3.15 | |
40 | 平均RMSE | 0.0436 | 0.0381 | 0.0365 | 0.0363 |
标准差/% | 0.269 | 0.136 | 0.0444 | 0.0399 | |
运行时间/s | — | 46.67 | 21.38 | 5.82 |
1 | 汤健, 柴天佑, 刘卓, 等. 基于更新样本智能识别算法的自适应集成建模[J]. 自动化学报, 2016, 42(7): 1040-1052. |
Tang J, Chai T Y, Liu Z, et al. Adaptive ensemble modelling approach based on updating sample intelligent identification[J]. Acta Automatica Sinica, 2016, 42(7): 1040-1052. | |
2 | Zheng J H, Song Z H. Semi-supervised learning for probabilistic partial least squares regression model and soft sensor application[J]. Journal of Process Control, 2018, 64: 123-131. |
3 | Li H, You S, Zhang H, et al. Analyzing the impact of heating emissions on air quality index based on principal component regression[J]. Journal of Cleaner Production, 2018, 171: 1577-1592. |
4 | Popli K, Maries V, Afacan A, et al. Development of a vision-based online soft sensor for oil sands flotation using support vector regression and its application in the dynamic monitoring of bitumen extraction[J]. Canadian Journal of Chemical Engineering, 2018, 96(7): 1532-1540. |
5 | Zhang Z, Wang T, Liu X. Melt index prediction by aggregated RBF neural networks trained with chaotic theory[J]. Neurocomputing, 2014, 131(5): 368-376. |
6 | Ranjan R, Huang B, Fatehi A. Robust gaussian process modeling using EM algorithm[J]. Journal of Process Control, 2016, 42: 125-136. |
7 | 张晓晗, 汪平江, 顾祥柏,等. 基于主元提取的鲁棒极限学习机研究及其化工建模应用[J]. 化工学报, 2019, 70(2): 55-60. |
Zhang X H, Wang P J, Gu X B, et al. Research on principal components extraction based robust extreme learning machine(PCE-RELM) and its application to modeling chemical processes[J]. CIESC Journal, 2019, 70(2): 55-60. | |
8 | 王宇红, 狄克松, 张姗, 等. 基于DBN-ELM的聚丙烯熔融指数的软测量[J]. 化工学报, 2016, 67(12): 5163-5168. |
Wang Y H, Di K S, Zhang S, et al. Melt index prediction of polypropylene based on DBN-ELM[J]. CIESC Journal, 2016, 67(12): 5163-5168. | |
9 | 赵立杰, 王海龙, 陈斌. 基于流形正则化半监督学习的污水处理操作工况识别方法[J]. 化工学报, 2016, 67(6): 2462-2468. |
Zhao L J, Wang H L, Chen B. Identification of wastewater operational conditions based on manifold regularization semi-supervised learning[J]. CIESC Journal, 2016, 67(6): 2462-2468. | |
10 | Cohn D A, Ghahramani Z, Jordan M I. Active learning with statistical models[J]. Journal of Artificial Intelligence Research, 1996, 4(1): 705-712. |
11 | Chiu S C, Jin Z, Gu Y. Active learning combining uncertainty and diversity for multi-class image classification[J]. IET Computer Vision, 2015, 9(3): 400-407. |
12 | Yin L, Wang H, Fan W, et al. Active learning based support vector data description method for robust novelty detection[J] Knowledge-Based Systems, 2018, 153: 40-52. |
13 | 李洋, 方滨兴, 郭莉, 等. 基于主动学习和TCM-KNN方法的有指导入侵检测技术[J]. 计算机学报, 2016, 30(8): 1464-1473. |
Li Y, Fang B X, Guo L, et al. Intrusion detection based on active learning and TCM-KNN algorithm[J]. Chinese Journal of Computers, 2016, 30(8): 1464-1473. | |
14 | Shi X D, Xiong W L. Approximate linear dependence criteria with active learning for smart soft sensor design[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 180: 88-95. |
15 | Ge Z Q. Active probabilistic sample selection for intelligent soft sensing of industrial processes[J]. Chemometrics and Intelligent Laboratory Systems, 2016, 151: 181-189. |
16 | Cohn D A. Neural network exploration using optimal experiment design[J]. Neural Networks, 1996, 9(6):1071-1083. |
17 | Zhang L, Chen C, Bu J, et al. Active learning based on locally linear reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10): 2026-2038. |
18 | Appice A, Loglisci C, Malerba D. Active learning via collective inference in network regression problems[J]. Information Sciences, 2018, 460–461: 293-317. |
19 | Demir B, Bruzzone L. A novel active learning method in relevance feedback for content-based remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2323-2334. |
20 | Norkus M, Fay D, Murphy M J, et al. On the application of active learning and gaussian processes in postcryopreservation cell membrane integrity experiments[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(3): 846-856. |
21 | Demir B, Bruzzone L. A multiple criteria active learning method for support vector regression[J]. Pattern Recognition, 2014, 47(7): 2558-2567. |
22 | Tang Q, Li D, Xi Y. A new active learning strategy for soft sensor modeling based on feature reconstruction and uncertainty evaluation[J]. Chemometrics and Intelligent Laboratory Systems, 2018, 172: 43-51. |
23 | Huang G B, Zhou H, Ding X, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems Man & Cybernetics Part B, 2012, 42(2): 513-529. |
24 | 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35: 146-153. |
Yang X Y, Guan W Y, Liu Y Q, et al. Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35: 146-153. | |
25 | 张雷, 张小刚, 陈华. 基于Gath-Geva算法和核极限学习机的多阶段间歇过程软测量[J]. 化工学报, 2018, 69(6): 2576-2585. |
Zhang L, Zhang X G, Chen H. Soft sensors for multi-stage batch processes based on Gath-Geva algorithm and kernel extreme learning machine[J]. CIESC Journal, 2018, 69(6): 2576-2585. | |
26 | Qian K, Zhang Z, Baird A, et al. Active learning for bird sound classification via a kernel-based extreme learning machine[J]. The Journal of the Acoustical Society of America, 2017, 142(4): 1796-1804. |
27 | Leng Q, Qi H, Miao J, et al. One-class classification with extreme learning machine[J]. Mathematical Problems in Engineering, 2015, 4: 1–11. |
28 | 王培良, 叶晓丰, 杨泽宇. 基于Block-RPLS模型自适应更新的质量预测方法[J]. 控制与决策, 2018, 33(3): 455-462. |
Wang P L, Ye X F, Yang Y Z. Quality prediction method based on adaptive updating of Block-RPLS model[J]. Control and Decision, 2018, 33(3): 455-462. | |
29 | Morey A, Pradhan S, Kumar R A, et al. Pollutant monitoring in tail gas of sulfur recovery unit with statistical and soft computing models[J]. Chemical Engineering Communications, 2018, 206(1): 69-85. |
30 | Douak F, Melgani F, Alajlanc N, et al. Active learning for spectroscopic data regression[J]. Journal of Chemometrics, 2012, 26(7): 374-383 |
31 | Douak F, Melgani F, Benoudjit N. Kernel ridge regression with active learning for wind speed prediction[J]. Applied Energy, 2013, 103: 328-340. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[9] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[10] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[11] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[12] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[13] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[14] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[15] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||