化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1255-1262.DOI: 10.11949/j.issn.0438-1157.20180893
曹小雪1(),吉绍长2,匡雯婕1,廖安平1,蓝平1,张金彦1()
收稿日期:
2018-08-03
修回日期:
2018-11-01
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
张金彦
作者简介:
<named-content content-type="corresp-name">曹小雪</named-content>(1992—),女,硕士,<email>cxx818221@163.com</email>|张金彦(1984—),女,博士,副教授,<email>zjy_03@126.com</email>
基金资助:
Xiaoxue CAO1(),Shaochang JI2,Wenjie KUANG1,Anping LIAO1,Ping LAN1,Jinyan ZHANG1()
Received:
2018-08-03
Revised:
2018-11-01
Online:
2019-04-05
Published:
2019-04-05
Contact:
Jinyan ZHANG
摘要:
在293.15~322.15 K温度范围内,研究L-苯丙氨酸无水物在甲醇-水混合溶剂中溶解度和超溶解度特性,得到L-苯丙氨酸无水物结晶介稳区,计算了成核级数及成核速率,考察了不同初始温度和降温速率对介稳区宽度的影响,并通过研究L-苯丙氨酸297.15 K和302.15 K的转晶水活度,依据溶解度特性绘制L-苯丙氨酸-甲醇-水在该温度下的三元相图。溶解度数据用Apelblat方程、λh方程关联、van t Hoff方程拟合。结果表明,L-苯丙氨酸无水物溶解度随温度的升高而增大,随甲醇体积分数的增加而减小;L-苯丙氨酸无水物结晶介稳区宽度在相同条件下,随初始温度的升高,降温速率的降低变窄;L-苯丙氨酸转晶水活度随温度的升高而增大。
中图分类号:
曹小雪, 吉绍长, 匡雯婕, 廖安平, 蓝平, 张金彦. 甲醇-水溶剂中L-苯丙氨酸结晶热力学[J]. 化工学报, 2019, 70(4): 1255-1262.
Xiaoxue CAO, Shaochang JI, Wenjie KUANG, Anping LIAO, Ping LAN, Jinyan ZHANG. Crystallization thermodynamics of L-phenylalanine in methanol-water solvent[J]. CIESC Journal, 2019, 70(4): 1255-1262.
T/K | x exp×103 | x cal,Apel×103 | x cal, λh ×103 | x cal,van’t Hoff ×103 | T/K | x exp ×103 | x cal,Apel ×103 | x cal, λh ×103 | x cal,van’t Hoff ×103 |
---|---|---|---|---|---|---|---|---|---|
V methanol∶V water =4∶6 | V methanol∶V water =2∶8 | ||||||||
322.15 | 3.29 | 3.27 | 3.37 | 3.33 | 322.15 | 3.49 | 3.52 | 3.67 | 3.62 |
317.15 | 2.97 | 3.00 | 3.02 | 3.00 | 317.15 | 3.36 | 3.32 | 3.34 | 3.32 |
312.15 | 2.70 | 2.72 | 2.71 | 2.70 | 312.15 | 3.09 | 3.08 | 3.03 | 3.02 |
307.15 | 2.46 | 2.45 | 2.42 | 2.42 | 307.15 | 2.78 | 2.82 | 2.75 | 2.75 |
302.15 | 2.20 | 2.18 | 2.15 | 2.16 | 302.15 | 2.53 | 2.54 | 2.49 | 2.50 |
297.15 | 1.94 | 1.92 | 1.91 | 1.92 | 297.15 | 2.27 | 2.25 | 2.24 | 2.26 |
293.15 | 1.68 | 1.72 | 1.73 | 1.74 | 293.15 | 2.02 | 2.02 | 2.06 | 2.08 |
V methanol∶V water =3∶7 | V methanol∶V water =15∶85 | ||||||||
322.15 | 3.42 | 3.43 | 3.52 | 3.48 | 322.15 | 3.57 | 3.59 | 3.66 | 3.64 |
317.15 | 3.18 | 3.15 | 3.17 | 3.15 | 317.15 | 3.38 | 3.36 | 3.38 | 3.36 |
312.15 | 2.85 | 2.87 | 2.85 | 2.85 | 312.15 | 3.15 | 3.13 | 3.11 | 3.10 |
307.15 | 2.55 | 2.59 | 2.56 | 2.56 | 307.15 | 2.86 | 2.89 | 2.85 | 2.86 |
302.15 | 2.38 | 2.32 | 2.29 | 2.29 | 302.15 | 2.64 | 2.64 | 2.62 | 2.62 |
297.15 | 2.03 | 2.05 | 2.04 | 2.05 | 297.15 | 2.40 | 2.40 | 2.39 | 2.40 |
293.15 | 1.83 | 1.84 | 1.85 | 1.86 | 293.15 | 2.20 | 2.20 | 2.23 | 2.22 |
V methanol∶V water =25∶75 | V methanol∶V water =1∶9 | ||||||||
322.15 | 3.46 | 3.47 | 3.60 | 3.55 | 322.15 | 3.62 | 3.66 | 3.70 | 3.69 |
317.15 | 3.24 | 3.21 | 3.24 | 3.21 | 317.15 | 3.52 | 3.44 | 3.45 | 3.44 |
312.15 | 2.93 | 2.94 | 2.91 | 2.90 | 312.15 | 3.21 | 3.22 | 3.20 | 3.21 |
307.15 | 2.62 | 2.65 | 2.60 | 2.60 | 307.15 | 2.99 | 3.00 | 2.98 | 2.98 |
302.15 | 2.38 | 2.36 | 2.32 | 2.33 | 302.15 | 2.74 | 2.78 | 2.76 | 2.76 |
297.15 | 2.09 | 2.08 | 2.07 | 2.08 | 297.15 | 2.56 | 2.55 | 2.56 | 2.56 |
293.15 | 1.84 | 1.85 | 1.88 | 1.89 | 293.15 | 2.40 | 2.38 | 2.40 | 2.40 |
表1 L-苯丙氨酸在甲醇-水混合溶剂中的溶解度
Table 1 Experimental solubility of L-Phe in methanol-water solvent mixtures
T/K | x exp×103 | x cal,Apel×103 | x cal, λh ×103 | x cal,van’t Hoff ×103 | T/K | x exp ×103 | x cal,Apel ×103 | x cal, λh ×103 | x cal,van’t Hoff ×103 |
---|---|---|---|---|---|---|---|---|---|
V methanol∶V water =4∶6 | V methanol∶V water =2∶8 | ||||||||
322.15 | 3.29 | 3.27 | 3.37 | 3.33 | 322.15 | 3.49 | 3.52 | 3.67 | 3.62 |
317.15 | 2.97 | 3.00 | 3.02 | 3.00 | 317.15 | 3.36 | 3.32 | 3.34 | 3.32 |
312.15 | 2.70 | 2.72 | 2.71 | 2.70 | 312.15 | 3.09 | 3.08 | 3.03 | 3.02 |
307.15 | 2.46 | 2.45 | 2.42 | 2.42 | 307.15 | 2.78 | 2.82 | 2.75 | 2.75 |
302.15 | 2.20 | 2.18 | 2.15 | 2.16 | 302.15 | 2.53 | 2.54 | 2.49 | 2.50 |
297.15 | 1.94 | 1.92 | 1.91 | 1.92 | 297.15 | 2.27 | 2.25 | 2.24 | 2.26 |
293.15 | 1.68 | 1.72 | 1.73 | 1.74 | 293.15 | 2.02 | 2.02 | 2.06 | 2.08 |
V methanol∶V water =3∶7 | V methanol∶V water =15∶85 | ||||||||
322.15 | 3.42 | 3.43 | 3.52 | 3.48 | 322.15 | 3.57 | 3.59 | 3.66 | 3.64 |
317.15 | 3.18 | 3.15 | 3.17 | 3.15 | 317.15 | 3.38 | 3.36 | 3.38 | 3.36 |
312.15 | 2.85 | 2.87 | 2.85 | 2.85 | 312.15 | 3.15 | 3.13 | 3.11 | 3.10 |
307.15 | 2.55 | 2.59 | 2.56 | 2.56 | 307.15 | 2.86 | 2.89 | 2.85 | 2.86 |
302.15 | 2.38 | 2.32 | 2.29 | 2.29 | 302.15 | 2.64 | 2.64 | 2.62 | 2.62 |
297.15 | 2.03 | 2.05 | 2.04 | 2.05 | 297.15 | 2.40 | 2.40 | 2.39 | 2.40 |
293.15 | 1.83 | 1.84 | 1.85 | 1.86 | 293.15 | 2.20 | 2.20 | 2.23 | 2.22 |
V methanol∶V water =25∶75 | V methanol∶V water =1∶9 | ||||||||
322.15 | 3.46 | 3.47 | 3.60 | 3.55 | 322.15 | 3.62 | 3.66 | 3.70 | 3.69 |
317.15 | 3.24 | 3.21 | 3.24 | 3.21 | 317.15 | 3.52 | 3.44 | 3.45 | 3.44 |
312.15 | 2.93 | 2.94 | 2.91 | 2.90 | 312.15 | 3.21 | 3.22 | 3.20 | 3.21 |
307.15 | 2.62 | 2.65 | 2.60 | 2.60 | 307.15 | 2.99 | 3.00 | 2.98 | 2.98 |
302.15 | 2.38 | 2.36 | 2.32 | 2.33 | 302.15 | 2.74 | 2.78 | 2.76 | 2.76 |
297.15 | 2.09 | 2.08 | 2.07 | 2.08 | 297.15 | 2.56 | 2.55 | 2.56 | 2.56 |
293.15 | 1.84 | 1.85 | 1.88 | 1.89 | 293.15 | 2.40 | 2.38 | 2.40 | 2.40 |
V methanol∶V water | A | B | C | R 2 | RMSD |
---|---|---|---|---|---|
4∶6 | 169.60 | ?9805.76 | ?25.09 | 0.9970 | 3.49×10?5 |
3∶7 | 178.46 | ?10150.70 | ?26.43 | 0.9949 | 1.67×10?5 |
25∶75 | 246.33 | ?13260.89 | ?36.51 | 0.9983 | 2.63×10?5 |
2∶8 | 315.16 | ?16202.01 | -46.84 | 0.9926 | 1.86×10?5 |
15∶85 | 149.99 | ?8473.50 | ?22.39 | 0.9981 | 3.15×10?5 |
1∶9 | 80.57 | ?5137.36 | ?12.16 | 0.9903 | 2.37×10?5 |
表2 Apelblat 模型拟合参数及均方差
Table 2 Regressed parameters and calculated root-mean-square deviation (RMSD) for L-Phe in methanol-water solvent mixtures by Apelblat equation
V methanol∶V water | A | B | C | R 2 | RMSD |
---|---|---|---|---|---|
4∶6 | 169.60 | ?9805.76 | ?25.09 | 0.9970 | 3.49×10?5 |
3∶7 | 178.46 | ?10150.70 | ?26.43 | 0.9949 | 1.67×10?5 |
25∶75 | 246.33 | ?13260.89 | ?36.51 | 0.9983 | 2.63×10?5 |
2∶8 | 315.16 | ?16202.01 | -46.84 | 0.9926 | 1.86×10?5 |
15∶85 | 149.99 | ?8473.50 | ?22.39 | 0.9981 | 3.15×10?5 |
1∶9 | 80.57 | ?5137.36 | ?12.16 | 0.9903 | 2.37×10?5 |
V methanol∶V water | λ | h | R 2 | RMSD |
---|---|---|---|---|
4∶6 | 0.042 | 48.74 | 0.9889 | 4.85×10?5 |
3∶7 | 0.038 | 50.96 | 0.9908 | 5.22×10?5 |
25∶75 | 0.041 | 48.55 | 0.9913 | 5.88×10?5 |
2∶8 | 0.028 | 60.38 | 0.9865 | 7.45×10?5 |
15∶85 | 0.018 | 78.15 | 0.9950 | 4.02×10?5 |
1∶9 | 0.012 | 96.40 | 0.9945 | 4.15×10?5 |
表3 λh模型拟合参数及均方差
Table 3 Regressed parameters and calculated root-mean-square deviation (RMSD) for L-Phe in methanol-water solvent mixtures by λh equation
V methanol∶V water | λ | h | R 2 | RMSD |
---|---|---|---|---|
4∶6 | 0.042 | 48.74 | 0.9889 | 4.85×10?5 |
3∶7 | 0.038 | 50.96 | 0.9908 | 5.22×10?5 |
25∶75 | 0.041 | 48.55 | 0.9913 | 5.88×10?5 |
2∶8 | 0.028 | 60.38 | 0.9865 | 7.45×10?5 |
15∶85 | 0.018 | 78.15 | 0.9950 | 4.02×10?5 |
1∶9 | 0.012 | 96.40 | 0.9945 | 4.15×10?5 |
V methanol∶V water | a | b | R 2 | RMSD |
---|---|---|---|---|
4∶6 | 2110.23 | 0.84 | 0.9922 | 3.26×10?5 |
3∶7 | 2037.10 | 0.66 | 0.9919 | 4.41×10?5 |
25∶75 | 2050.55 | 0.73 | 0.9922 | 4.70×10?5 |
2∶8 | 1813.77 | 0.0097 | 0.9858 | 6.31×10?5 |
15∶85 | 1595.19 | -0.66 | 0.9954 | 3.28×10?5 |
1∶9 | 1399.38 | -1.26 | 0.9932 | 3.83×10?5 |
表4 van’t Hoff模型拟合参数及均方差
Table 4 Regressed parameters and calculated root-mean-square deviation (RMSD) for L-Phe in methanol-water solvent mixtures by van’t Hoff equation
V methanol∶V water | a | b | R 2 | RMSD |
---|---|---|---|---|
4∶6 | 2110.23 | 0.84 | 0.9922 | 3.26×10?5 |
3∶7 | 2037.10 | 0.66 | 0.9919 | 4.41×10?5 |
25∶75 | 2050.55 | 0.73 | 0.9922 | 4.70×10?5 |
2∶8 | 1813.77 | 0.0097 | 0.9858 | 6.31×10?5 |
15∶85 | 1595.19 | -0.66 | 0.9954 | 3.28×10?5 |
1∶9 | 1399.38 | -1.26 | 0.9932 | 3.83×10?5 |
溶液水体积分数/% | x×103 | 稳定晶型 | 溶液水体积分数/% | x×103 | 稳定晶型 |
---|---|---|---|---|---|
297.15 K | 302.15 K | ||||
40 | 1.79 | anhydrous | 70 | 2.38 | anhydrous |
50 | 1.81 | anhydrous | 75 | 2.38 | anhydrous |
60 | 1.93 | anhydrous | 80 | 2.53 | anhydrous |
65 | 1.97 | anhydrous | 85 | 2.64 | anhydrous |
70 | 2.03 | anhydrous | 87 | 2.67 | anhydrous |
75 | 2.08 | anhydrous | 90 | 2.74 | anhydrous |
80 | 2.27 | anhydrous | 93 | 2.83 | anhydrous |
81 | 2.30 | anhydrous | 94 | 2.88 | anhydrous |
82 | 2.34 | anhydrous | 95 | 2.92 | anhydrous |
83 | 2.36 | anhydrous | 96 | 2.89 | anhydrous+monohydrate |
84 | 2.38 | anhydrous | 97 | 2.94 | monohydrate |
85 | 2.40 | anhydrous | 99 | 2.98 | monohydrate |
86 | 2.47 | anhydrous | 100 | 3.01 | monohydrate |
88 | 2.50 | anhydrous | |||
89 | 2.37 | anhydrous+monohydrate | |||
90 | 2.46 | monohydrate | |||
100 | 2.57 | monohydrate |
表5 L-苯丙氨酸在混合溶剂中的摩尔分数数据及稳定性晶型
Table 5 Molar fraction data and stable crystal form of L-Phe in mixed solvents
溶液水体积分数/% | x×103 | 稳定晶型 | 溶液水体积分数/% | x×103 | 稳定晶型 |
---|---|---|---|---|---|
297.15 K | 302.15 K | ||||
40 | 1.79 | anhydrous | 70 | 2.38 | anhydrous |
50 | 1.81 | anhydrous | 75 | 2.38 | anhydrous |
60 | 1.93 | anhydrous | 80 | 2.53 | anhydrous |
65 | 1.97 | anhydrous | 85 | 2.64 | anhydrous |
70 | 2.03 | anhydrous | 87 | 2.67 | anhydrous |
75 | 2.08 | anhydrous | 90 | 2.74 | anhydrous |
80 | 2.27 | anhydrous | 93 | 2.83 | anhydrous |
81 | 2.30 | anhydrous | 94 | 2.88 | anhydrous |
82 | 2.34 | anhydrous | 95 | 2.92 | anhydrous |
83 | 2.36 | anhydrous | 96 | 2.89 | anhydrous+monohydrate |
84 | 2.38 | anhydrous | 97 | 2.94 | monohydrate |
85 | 2.40 | anhydrous | 99 | 2.98 | monohydrate |
86 | 2.47 | anhydrous | 100 | 3.01 | monohydrate |
88 | 2.50 | anhydrous | |||
89 | 2.37 | anhydrous+monohydrate | |||
90 | 2.46 | monohydrate | |||
100 | 2.57 | monohydrate |
体系 | (g 12?g 11)/(J/mol) | (g 21?g 22)/(J/mol) | | |
---|---|---|---|---|
甲醇+水 | 107.3832 | 469.5509 | 18.018883 | 39.57286 |
表6 Wilson 方程参数
Table 6 Parameters of Wilson equation
体系 | (g 12?g 11)/(J/mol) | (g 21?g 22)/(J/mol) | | |
---|---|---|---|---|
甲醇+水 | 107.3832 | 469.5509 | 18.018883 | 39.57286 |
1 | Lu J , Li Z , Jiang X L , et al . Solubility of L-phenylalanine in aqueous solutions[J]. Journal of Chemical Engineering of Japan, 2010, 43(9): 810–813. |
2 | Lu J , Lin Q , Li Z , et al . Solubility of L-phenylalanine anhydrous and monohydrate forms: experimental measurements and predictions[J]. Journal of Chemical & Engineering Data, 2012, 57(57): 1492-1498. |
3 | Lu J , Wang J , Li Z , et al . Characterization and pseudopolymorphism of L-phenylalanine anhydrous and monohydrate forms[J]. African Journal of Pharmacy and Pharmacology, 2012, 6(4): 269-277. |
4 | Li R R , Ye S F , Chen Y F . Solubility of sulfachloropyridazine in pure and binary solvent mixtures and investigation of intermolecular interactions[J]. Journal of Chemical & Engineering Data, 2018, 63(6): 2002-2008. |
5 | Chao Y , Lo T , Luo N . Selective production of L-aspartic acid and L-Phenylalanine by coupling reactions of aspartase and aminotransferase in escherichia coli[J]. Enzyme & Microbial Technology, 2000, 27(1): 19-25. |
6 | Xu H , Wei P , Zhou H , et al . Efficient production of L-phenylalanine catalyzed by a coupled enzymatic system of transaminase and aspartase[J]. Enzyme and Microbial Technology, 2003, 33(5): 537-543. |
7 | Edahiro J , Nakamura M , Seki M , et al . Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of L-phenylalanine into the medium[J]. Journal of Bioscience and Bioengineering, 2005, 99(1): 43-47. |
8 | Eyal A M , Bressler E . Industrial separation of carboxylic and amino acids by liquid membranes: applicability, process considerations and potential advantage[J]. Biotechnology & Bioengineering, 2010, 41(3): 287-295. |
9 | And C J L , Rousseau R W . Solubilities of and transformations between the anhydrous and hydrated forms of L-serine in water−methanol solutions[J]. Crystal Growth & Design, 2006, 6(8): 1808-1812. |
10 | Cuellar M C , Herreilers S N , Straathof A J J , et al . Limits of operation for the integration of water removal by membranes and crystallization of L-phenylalanine[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1566-1573. |
11 | O’Mahony M A , Croker D M , Rasmuson A C , et al . Measuring the solubility of a quickly transforming metastable polymorph of carbamazepine[J]. Organic Process Research & Development, 2013, 17(3): 512-518. |
12 | Hanna M , Shan N , Cheney M L , et al . Solubility modeling and solvent effects of allopurinol in 15 neat solvents[J]. Journal of Chemical & Engineering Data, 2018, 63(9): 3551-3558. |
13 | Docherty R , Pencheva K , Abramov Y A . Low solubility in drug development: de-convoluting the relative importance of solvation and crystal packing[J]. Journal of Pharmacy & Pharmacology, 2015, 67(6): 847-856. |
14 | Fayjunessa R , Sarkar M R , Sultana R , et al . Study on dissolution improvement of allopurinol by co-grinding and fusion method using solid dispersion technique[J]. J. Biomed. Pharmaceut. Res., 2013, 2: 1-7. |
15 | Healy A M , Worku Z A , Kumar D , et al . Pharmaceutical solvates, hydrates and amorphous forms[J]. Advanced Drug Delivery Reviews, 2017, 117(1): 25-46. |
16 | Neglur R , Hosten E , Aucamp M , et al . Water and the relationship to the crystal structure stability of azithromycin[J]. Journal of Thermal Analysis & Calorimetry, 2018, 132(1): 373-384. |
17 | Carta R . Solubilities of L-cystine, L-tyrosine, L-leucine, and glycine in sodium chloride solutions at various pH values[J]. Journal of Chemical Thermodynamics, 1998, 30(3): 379-387. |
18 | Hazi M T , Lenka M , Sarkar D . Nucleation kinetics from metastable zone widths for sonocrystallization of L-phenylalanine[J]. Ultrasonics Sonochemistry, 2017, 36: 497-506. |
19 | Imran S , Hossain A , Mahali K , et al . Role of solubility and solvation thermodynamics on the stability of L-phenylalanine in aqueous methanol and ethanol solutions[J]. Journal of Molecular Liquids, 2018, 265(1): 693-700. |
20 | Zhang Y Z , Guo X , Tang P , et al . Solubility of 2,5-furandicarboxylic acid in eight pure solvents and two binary solvent systems at 313.15—363.15 K[J]. Journal of Chemical & Engineering Data, 2018, 63(5): 1316-1324. |
21 | Wang Z , Li Y , Fang W , et al . Salting effects on the solubility and transformation kinetics of L-phenylalanine anhydrate/monohydrate in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2012, 53(2): 521-529. |
22 | Zhou X , Fan J , Li N , et al . Solubility of L-phenylalanine in water and different binary mixtures from 288.15 to 318.15 K[J]. Fluid Phase Equilibria, 2012, 316(8): 26-33. |
23 | 赵宏宇, 顾正彪, 程力, 等 . 莱鲍迪苷A在甲醇-水体系中溶解度与超溶解度的测定[J]. 食品工业科技, 2012, 33(11): 340-342. |
Zhao H Y , Gu Z B , Cheng L , et al . Determination of solubility and supersolubility of rebaudioside A in methanol aqueous solution[J]. Science and Technology of Food Industry, 2012, 33(11): 340-342. | |
24 | Baluja S , Alnayab E A M , Hirapara A . Solubility and solution thermodynamics of hippuric acid in various solvents from 298.15 K to 328.15 K[J]. Journal of Molecular Liquids, 2017, 238: 84-88. |
25 | Chen L Z , Song L , Lan G C , et al . Solubility and metastable zone width measurement of 3,4-bis(3-nitrofurazan-4-yl) furoxan (DNTF) in ethanol + water[J]. Chinese Journal of Chemical Engineering, 2017, 25(5): 646-651. |
26 | Buchowski H , Ksiazczak A , Pietrzyk S . ChemInform abstract: solvent activity along a saturation line and solubility of hydrogen-bonding solids [J]. Journal of Physical Chemistry, 1980, 84(9): 975-979. |
27 | Su J , Chao Q , Luo N , et al . Experimental measurement and modeling of the solubility of biotin in six pure solvents at temperatures from 298.15 K to 333.85 K[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3894-3899. |
28 | Xie Y , Shi H W , Du C B , et al . Solubility determination and modeling for 4,4 -dihydroxydiphenyl sulfone in mixed solvents of (acetone, ethyl acetate, or acetonitrile)+ methanol and acetone + ethanol from (278.15 to 313.15) K[J]. Journal of Chemical & Engineering Data, 2016, 61(10): 3519-3526. |
29 | Wilson G M . Vapor-liquid equilibrium(Ⅺ). A new expression for the excess free energy of mixing[J]. J. Am. Chem. Soc., 1964, 86(2): 127-130. |
30 | Cravo F M , Bessa L C B A , Abreu C R A , et al . Liquid-liquid equilibrium of systems containing triolein + (fatty acid/ partial acylglycerols/ester) + ethanol: experimental data and UNIFAC modeling[J]. Fluid Phase Equilibria, 2018, 476(B): 186-192. |
31 | Wang L , Feng H , Peng J , et al . Solubility, metastable zone width, and nucleation kinetics of sodium dichromate dihydrate[J]. Journal of Chemical & Engineering Data, 2015, 60(1): 185-191. |
32 | Belgacem Z B , Dousset X , Prévost H , et al . Polyphasic taxonomic studies of lactic acid bacteria associated with tunisian fermented meat based on the heterogeneity of the 16S-23S rRNA gene intergenic spacer region[J]. Archives of Microbiology, 2009, 191(9): 711-720. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 张学平, 崔瑞芝, 桑世华. NaBr-CaBr2-H2O和KBr-CaBr2-H2O三元体系273.15 K相平衡实验及计算[J]. 化工学报, 2021, 72(9): 4479-4486. |
[3] | 郭盛争, 吴送姑, 苏鑫, 高伟, 牛志平, 龚俊波. 莱鲍迪苷A溶解度与介稳区宽度的测定及其结晶过程研究[J]. 化工学报, 2021, 72(8): 3997-4008. |
[4] | 李丹, 孙帅琦, 张涛, 赵一慧, 孟令宗, 郭亚飞, 邓天龙. 五元体系HCl-NaCl-CaCl2-H3BO3-H2O在298.15 K的Pitzer模型及其应用研究[J]. 化工学报, 2021, 72(6): 3160-3169. |
[5] | 曾英, 陈佩君, 于旭东. 四元体系Rb+, Cs+, Mg2+ // SO42- - H2O 298.2 K相平衡研究[J]. 化工学报, 2020, 71(8): 3460-3468. |
[6] | 高意, 曹亚慧, 范杰平. 离子液体中结晶分离熊果酸和齐墩果酸研究[J]. 化工学报, 2020, 71(8): 3633-3643. |
[7] | 王雪莹,黄雪莉,黄河,罗清龙,邹雪净. -15℃下Na+, K+, Mg2+//Cl-, NO3-, SO42--H2O体系相平衡研究[J]. 化工学报, 2020, 71(11): 5059-5066. |
[8] | 李涛, 沙娇, 赵瑞, 张鹏帅, 刘士琪, 李玉, 任保增. 双季戊四醇在3种混合溶剂中的固-液相平衡[J]. 化工学报, 2020, 71(1): 245-253. |
[9] | 阎昊, 阎卫东. 两种天然甜味剂甜菊苷和瑞鲍迪苷A在不同溶剂中的溶解度测定[J]. 化工学报, 2020, 71(1): 231-236. |
[10] | 刘向阳,何茂刚. R1233zd(E)在[HMIM][PF6]中的溶解度和扩散系数的实验测量和理论计算[J]. 化工学报, 2019, 70(S2): 44-49. |
[11] | 聂国亮, 桑世华, 崔瑞芝. 298 K和323 K条件下五元体系NaBr-KBr-MgBr2-CaBr2-H2O相平衡研究[J]. 化工学报, 2019, 70(9): 3267-3274. |
[12] | 曹小雪, 吉绍长, 匡雯婕, 廖安平, 蓝平, 张金彦. 阿奇霉素二水合物在水-有机溶剂中溶解度及三元相图测定[J]. 化工学报, 2019, 70(3): 817-829. |
[13] | 徐学满, 桂霞, 云志. CO2在醚酯溶剂中的溶解度测定及热力学计算[J]. 化工学报, 2019, 70(11): 4113-4122. |
[14] | 戈海文, 王怀有, 王敏. 碳酸锂在碳酸钠溶液中的溶解度与热力学[J]. 化工学报, 2019, 70(11): 4123-4130. |
[15] | 葛敬, 朱家骅, 夏素兰, 刘仕忠. 二水硫酸钙在硫酸铵溶液中的溶解度测定[J]. 化工学报, 2018, 69(7): 2829-2837. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||