化工学报 ›› 2019, Vol. 70 ›› Issue (S2): 44-49.DOI: 10.11949/0438-1157.20190544
收稿日期:
2019-05-21
修回日期:
2019-05-31
出版日期:
2019-09-06
发布日期:
2019-09-06
通讯作者:
何茂刚
基金资助:
Manh Quang NGUYEN
Received:
2019-05-21
Revised:
2019-05-31
Online:
2019-09-06
Published:
2019-09-06
摘要:
R1233zd(E)具有无毒、环保、不可燃等优点,而离子液体具有较宽的液体温度范围和良好的物理化学性质。R1233zd(E)和离子液体相结合可以成为一种优良的吸收式制冷工质对。测量了R1233zd(E)在[HMIM][PF6]离子液体中的溶解度和扩散系数,温度测量范围为303.2~343.2 K,压力测量范围为23~140 kPa。为了方便工业化应用,采用NRTL方程和Arrhenius方程对实验结果进行了关联,计算结果和实验数据之间的平均偏差和最大偏差分别为2.45%和6.13%。
中图分类号:
刘向阳,何茂刚. R1233zd(E)在[HMIM][PF6]中的溶解度和扩散系数的实验测量和理论计算[J]. 化工学报, 2019, 70(S2): 44-49.
Manh Quang NGUYEN. Experimental measurement and theoretical calculation of solubility and diffusion coefficient of R1233zd(E) in [HMIM][PF6][J]. CIESC Journal, 2019, 70(S2): 44-49.
T/K | p/ kPa | x | T/K | p/kPa | x |
---|---|---|---|---|---|
303.2 | 23.02 | 0.016 | 323.2 | 81.92 | 0.05 |
303.2 | 37.44 | 0.03 | 323.2 | 108.3 | 0.069 |
303.2 | 50.26 | 0.043 | 333.2 | 36.48 | 0.01 |
303.2 | 63.34 | 0.057 | 333.2 | 55.82 | 0.021 |
303.2 | 81.58 | 0.079 | 333.2 | 74.18 | 0.033 |
313.2 | 27.21 | 0.014 | 333.2 | 94.31 | 0.045 |
313.2 | 41.67 | 0.027 | 333.2 | 123.8 | 0.063 |
313.2 | 57.32 | 0.04 | 343.2 | 40.93 | 0.008 |
313.2 | 72.47 | 0.054 | 343.2 | 64.48 | 0.018 |
313.2 | 93.88 | 0.074 | 343.2 | 85.33 | 0.029 |
323.2 | 31.37 | 0.013 | 343.2 | 106.4 | 0.04 |
323.2 | 47.93 | 0.025 | 343.2 | 142.3 | 0.057 |
323.2 | 65.24 | 0.037 |
表1 R1233zd(E)在离子液体[HMIM][PF6]中溶解度的实验结果
Table 1 Experimental results of solubility of R1233zd(E) in ionic liquid [HMIM][PF6]
T/K | p/ kPa | x | T/K | p/kPa | x |
---|---|---|---|---|---|
303.2 | 23.02 | 0.016 | 323.2 | 81.92 | 0.05 |
303.2 | 37.44 | 0.03 | 323.2 | 108.3 | 0.069 |
303.2 | 50.26 | 0.043 | 333.2 | 36.48 | 0.01 |
303.2 | 63.34 | 0.057 | 333.2 | 55.82 | 0.021 |
303.2 | 81.58 | 0.079 | 333.2 | 74.18 | 0.033 |
313.2 | 27.21 | 0.014 | 333.2 | 94.31 | 0.045 |
313.2 | 41.67 | 0.027 | 333.2 | 123.8 | 0.063 |
313.2 | 57.32 | 0.04 | 343.2 | 40.93 | 0.008 |
313.2 | 72.47 | 0.054 | 343.2 | 64.48 | 0.018 |
313.2 | 93.88 | 0.074 | 343.2 | 85.33 | 0.029 |
323.2 | 31.37 | 0.013 | 343.2 | 106.4 | 0.04 |
323.2 | 47.93 | 0.025 | 343.2 | 142.3 | 0.057 |
323.2 | 65.24 | 0.037 |
T/K | H/MPa | D×1010/(m2·s-1) |
---|---|---|
303.2 | 1.4604 | 0.9724 |
313.2 | 1.9248 | 1.4506 |
323.2 | 2.3614 | 2.0671 |
333.2 | 3.486 | 3.1289 |
343.2 | 4.8601 | 4.4513 |
表2 R1233zd(E)在离子液体[HMIM][PF6]中的扩散系数和亨利常数实验结果
Table 2 Experimental results of diffusion coefficient and Henry’s constant of R1233zd(E) in ionic liquid [HMIM][PF6]
T/K | H/MPa | D×1010/(m2·s-1) |
---|---|---|
303.2 | 1.4604 | 0.9724 |
313.2 | 1.9248 | 1.4506 |
323.2 | 2.3614 | 2.0671 |
333.2 | 3.486 | 3.1289 |
343.2 | 4.8601 | 4.4513 |
α | AARD/% | MD/% | ||||
---|---|---|---|---|---|---|
0.013 | -0.60982 | 869.04 | 626.12 | 3066.11 | 2.45 | 6.13 |
表3 NRTL方程的拟合参数和误差
Table 3 Fitting parameters and errors of NRTL equation
α | AARD/% | MD/% | ||||
---|---|---|---|---|---|---|
0.013 | -0.60982 | 869.04 | 626.12 | 3066.11 | 2.45 | 6.13 |
A | -B | AARD/% | MD/% |
---|---|---|---|
612117.9 | -33758.8 | 1.91 | 4.12 |
表4 Arrhenius 方程的拟合参数和误差
Table 4 Fitting parameters and errors of Arrhenius equation
A | -B | AARD/% | MD/% |
---|---|---|---|
612117.9 | -33758.8 | 1.91 | 4.12 |
1 | ZhangH, XuanG, YangD, et al. Emergy analysis of organic Rankine cycle (ORC) for waste heat power generation[J]. Journal of Cleaner Production, 2018, 183: 1207-1215. |
2 | ManzelaA A, HanriotS M, Cabezas-GómezL, et al. Using engine exhaust gas as energy source for an absorption refrigeration system[J]. Applied Energy, 2010, 87(4): 1141-1148. |
3 | LiQ, SunZ, WangH, et al. Insight into the enhanced CO2 photocatalytic reduction performance over hollow-structured bi-decorated g-C3N4 nanohybrid under visible-light irradiation[J]. Journal of CO2 Utilization, 2018, 28: 126-136. |
4 | SalmiW, VanttolaJ, ElgM, et al. Using waste heat of ship as energy source for an absorption refrigeration system[J]. Applied Thermal Engineering, 2017, 115(Complete): 501-516. |
5 | EbrahimiK, JonesG F, FleischerA S. Thermo-economic analysis of steady state waste heat recovery in data centers using absorption refrigeration[J]. Applied Energy, 2015, 139: 384-397. |
6 | 李星, 徐士鸣, 李见波. 基于R124-DMAC为工质对的余热吸收式制冷[J]. 化工学报, 2015, 66(5): 1883-1890. |
LiX, XuS M, LiJ B. Absorption refrigeration cycle driven by waste heat using R124-DMAC as working fluids[J]. CIESC Journal, 2015, 66(5): 1883-1890. | |
7 | 王刚, 解国珍, 王亮亮. 溴化锂吸收式循环的内外热物理参数与机组制冷特性耦合[J]. 化工学报, 2012, 63(S2): 1-7. |
WangG, XieG Z, WangL L. Coupling of lithium bromide absorption cycle inside and outside thermal physical parameters and refrigeration unit characteristics[J]. CIESC Journal, 2012, 63(S2): 1-7. | |
8 | FarshiL G, FerreiraC A I, MahmoudiS M S, et al. First and second law analysis of ammonia/salt absorption refrigeration systems[J]. International Journal of Refrigeration, 2014, 40(4): 111-121. |
9 | 刘向阳, 潘培, 彭三国, 等. 氢氟烃在离子液体[HMIM][PF6]中的扩散系数和亨利常数[J]. 化工学报, 2017, 68(12): 4486-4493. |
LiuX Y, PanP, PengS G, et al. Diffusion coefficients and Henry’s constants of six hydrofluorocarbons in ionic liquid [HMIM][PF6][J]. CIESC Journal, 2017, 68(12): 4486-4493. | |
10 | RenW, ScurtoA M. Phase equilibria of imidazolium ionic liquids and the refrigerant gas, 1, 1, 1, 2-tetrafluoroethane (R-134a)[J]. Fluid Phase Equilibria, 2009, 286(1): 1-7. |
11 | WuW, WangB, ShiW, et al. Absorption heating technologies: a review and perspective[J]. Applied Energy, 2014, 130(Complete): 51-71. |
12 | WangK, AbdelazizO, KisariP, et al. State-of-the-art review on crystallization control technologies for water/LiBr absorption heat pumps[J]. International Journal of Refrigeration, 2011, 34(6): 1325-1337. |
13 | AndersonJ L, DixonJ K, BrenneckeJ F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hexyl-3 -methylpyridinium bis (trifluoromethylsulfonyl)imide: comparison to other ionic liquids[J]. Accounts of Chemical Research, 2007, 40 (11): 1208-1216. |
14 | ZhangS, SunN, HeX, et al. Physical properties of ionic liquids: database and evaluation[J]. Journal of Physical & Chemical Reference Data, 2006, 35(4): 1475-1517. |
15 | KimS, KohlP A . Theoretical and experimental investigation of an absorption refrigeration system using R134/[bmim][PF6] working fluid[J]. Industrial & Engineering Chemistry Research, 2013, 52(37): 13459–13465. |
16 | FallanzaM, OrtizA, GorriD, et al. Propylene and propane solubility in imidazolium, pyridinium, and tetralkylammonium based ionic liquids containing a silver salt[J]. Journal of Chemical & Engineering Data, 2013, 58(8): 2147-2153. |
17 | LiuX, HeM, LvN, et al. Solubilities of R-161 and R-143a in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide[J]. Fluid Phase Equilibria, 2015, 388: 37-42. |
18 | ShiflettM B, YokozekiA. Gaseous absorption of fluoromethane, fluoroethane, and 1, 1, 2, 2-tetrafluoroethane in 1-butyl-3- methylimidazolium hexafluorophosphate[J]. Industrial & Engineering Chemistry Research, 2006, 45(18): 6375-6382. |
19 | MondéjarM E, McLindenM D, LemmonE W. Thermodynamic properties of trans-1-chloro-3, 3, 3- trifluoropropene (R1233zd(E)): vapor pressure, (p, ρ, T) behavior, and speed of sound measurements, and equation of state[J]. Journal of Chemical & Engineering Data, 2015, 60(8): 2477-2489. |
20 | HulseR J, BasuR S, SinghR R, et al. Physical properties of HCFO-1233zd (E)[J]. Journal of Chemical & Engineering Data, 2012, 57(12): 3581-3586. |
21 | SánchezD, CabelloR, LlopisR, et al. Energy performance evaluation of R1234yf, R1234ze (E), R600a, R290 and R152a as low-GWP R134a alternatives[J]. International Journal of Refrigeration, 2017, 74: 269-282. |
22 | CamperD, BeckerC, KovalC, et al. Diffusion and solubility measurements in room temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 445-450. |
23 | ShokouhiM, AdibiM, JaliliA H, et al. Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl) -3-methylimidazolium tetrafluoroborate[J]. Journal of Chemical & Engineering Data, 2010, 55(4): 1663-1668. |
24 | LiuX, PanP, YangF, et al. Solubilities and diffusivities of R227ea, R236fa and R245fa in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide[J]. The Journal of Chemical Thermodynamics, 2018, 123: 158-164. |
25 | ShokouhiM, AdibiM, JaliliA H, et al. Solubility and diffusion of H2S and CO2 in the ionic liquid 1-(2-hydroxyethyl) -3-methylimidazolium tetrafluoroborate[J]. Journal of Chemical & Engineering Data, 2010, 55(4): 1663-1668. |
26 | MaogangH, PeiP, FengY, et al. Gaseous absorption of trans-1-chloro-3,3,3-trifluoropropene in three immidazolium-based ionic liquids[J]. Journal of Chemical and Engineering Data, 2018, 63: 1780-1788. |
27 | RenonH, PrausnitzJ M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144. |
28 | ShiflettM B, YokozekiA. Solubility and diffusivity of hydrofluorocarbons in room‐temperature ionic liquids[J]. AIChE Journal, 2006, 52(3): 1205-1219. |
29 | KrynickiK, GreenC D, SawyerD W. Pressure and temperature dependence of self-diffusion in water[J]. Faraday Discussions of the Chemical Society, 1978, 66: 199-208. |
30 | RichterJ, LeuchterA, GroßerN. Digital image holography for diffusion measurements in molten salts and ionic liquids—method and first results[J]. Journal of Molecular Liquids, 2003, 103: 359-370. |
[1] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[2] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[9] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[12] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[13] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[14] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[15] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 486
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||