化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1263-1271.DOI: 10.11949/j.issn.0438-1157.20180936
收稿日期:
2018-08-20
修回日期:
2019-01-29
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
吴慧英
作者简介:
<named-content content-type="corresp-name">王慧儒</named-content>(1981—),女,博士研究生,<email>wanghrfy@163.com</email>|吴慧英(1967—),女,博士,教授,<email>whysrj@sjtu.edu.cn</email>
基金资助:
Huiru WANG(),Zhenyu LIU,Yuanpeng YAO,Huiying WU(
)
Received:
2018-08-20
Revised:
2019-01-29
Online:
2019-04-05
Published:
2019-04-05
Contact:
Huiying WU
摘要:
采用高清相机和红外热像技术,对组合相变材料融化-凝固循环过程与传热特性开展了可视化实验研究。以填充三种石蜡的相变蓄热腔体为研究对象,追踪了腔体内固液相界面的动态演化过程和温度分布的变化规律。在此基础上,考察了相变材料布置顺序对蓄热腔体热性能的影响,分析了组合相变材料蓄热腔体的相变行为及强化传热特性。结果表明,相变温度较高的相变材料应靠近加热壁面布置;组合相变材料蓄热腔体存在多个固液相界面现象,不同相变材料可同时融化/凝固;与单一相变材料相比,组合相变材料的应用改善了蓄热腔体各单元相变速率的均匀性,提高了平均相变速率;组合相变材料虽然降低了蓄热腔体的显热蓄热量,但减小了温度变化速率,增强了系统的稳定性,并显著增加了潜热蓄热量,有效提高了相变蓄热腔体的总蓄热量。
中图分类号:
王慧儒, 刘振宇, 姚元鹏, 吴慧英. 组合相变材料强化固液相变传热可视化实验[J]. 化工学报, 2019, 70(4): 1263-1271.
Huiru WANG, Zhenyu LIU, Yuanpeng YAO, Huiying WU. Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs[J]. CIESC Journal, 2019, 70(4): 1263-1271.
热物性参数 | RT65 | RT42 | RT27 |
---|---|---|---|
相变温度T m/℃ | 63.2 | 43.4 | 28.8 |
潜热h sf /(kJ·kg-1) | 172.0 | 148.2 | 154.3 |
比热容cp /(kJ·kg-1·K-1) | |||
固体 | 2.90 | 3.02 | 3.44 |
液体 | 2.50 | 2.33 | 2.53 |
密度ρ /(kg?m-3) | |||
固体 | 870 | 880 | 870 |
液体 | 760 | 760 | 740 |
热导率λ/(W?m-1?K-1) | |||
固体 | 0.23 | 0.24 | 0.23 |
液体 | 0.17 | 0.17 | 0.16 |
表1 石蜡的热物性参数
Table 1 Thermophysical properties of paraffins
热物性参数 | RT65 | RT42 | RT27 |
---|---|---|---|
相变温度T m/℃ | 63.2 | 43.4 | 28.8 |
潜热h sf /(kJ·kg-1) | 172.0 | 148.2 | 154.3 |
比热容cp /(kJ·kg-1·K-1) | |||
固体 | 2.90 | 3.02 | 3.44 |
液体 | 2.50 | 2.33 | 2.53 |
密度ρ /(kg?m-3) | |||
固体 | 870 | 880 | 870 |
液体 | 760 | 760 | 740 |
热导率λ/(W?m-1?K-1) | |||
固体 | 0.23 | 0.24 | 0.23 |
液体 | 0.17 | 0.17 | 0.16 |
编号 | 单一/组合相变材料 | PCM 1# | PCM 2# | PCM 3# |
---|---|---|---|---|
1# | RT27 | RT27 | RT27 | RT27 |
2# | RT42 | RT42 | RT42 | RT42 |
3# | RT65 | RT65 | RT65 | RT65 |
4# | RT65–RT42–RT27 | RT65 | RT42 | RT27 |
5# | RT65–RT27–RT42 | RT65 | RT27 | RT42 |
6# | RT42–RT65–RT27 | RT42 | RT65 | RT27 |
7# | RT42–RT27–RT65 | RT42 | RT27 | RT65 |
8# | RT27–RT42–RT65 | RT27 | RT42 | RT65 |
9# | RT27–RT65–RT42 | RT27 | RT65 | RT42 |
表2 单一和组合相变材料蓄热腔体中石蜡的布置
Table 2 Arrangement of paraffins for single-PCM and multiple-PCM TES containers
编号 | 单一/组合相变材料 | PCM 1# | PCM 2# | PCM 3# |
---|---|---|---|---|
1# | RT27 | RT27 | RT27 | RT27 |
2# | RT42 | RT42 | RT42 | RT42 |
3# | RT65 | RT65 | RT65 | RT65 |
4# | RT65–RT42–RT27 | RT65 | RT42 | RT27 |
5# | RT65–RT27–RT42 | RT65 | RT27 | RT42 |
6# | RT42–RT65–RT27 | RT42 | RT65 | RT27 |
7# | RT42–RT27–RT65 | RT42 | RT27 | RT65 |
8# | RT27–RT42–RT65 | RT27 | RT42 | RT65 |
9# | RT27–RT65–RT42 | RT27 | RT65 | RT42 |
1 | Lin Y , Jia Y , Alva G , et al . Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2730-2742. |
2 | Dhaidan N S , Khodadadi J M , Al-Hattab T A , et al . Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity[J]. International Journal of Heat and Mass Transfer, 2013, 67: 455-468. |
3 | 施尚, 余建祖, 陈梦东, 等 . 基于泡沫铜/石蜡的锂电池热管理系统性能[J]. 化工学报, 2017, 68(7): 2678-2683. |
Shi S , Yu J Z , Chen M D , et al . Battery thermal management system using phase change materials and foam copper[J]. CIESC Journal, 2017, 68(7): 2678-2683. | |
4 | Yao Y , Wu H , Liu Z , et al . Pore-scale visualization and measurement of paraffin melting in high porosity open-cell copper foam[J]. International Journal of Thermal Sciences, 2018, 123: 73-85. |
5 | 张鹏, 肖鑫, 王如竹, 等 . 壳管式潜热蓄能系统换热特性[J]. 化工学报, 2012, 63(S2): 14-20. |
Zhang P , Xiao X , Wang R Z , et al . Heat transfer characteristics of shell-tube latent thermal energy storage system[J]. CIESC Journal, 2012, 63(S2): 14-20. | |
6 | Jegadheeswaran S , Pohekar S D . Performance enhancement in latent heat thermal storage system: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2225-2244. |
7 | Ibrahim N I , Al-Sulaiman F A , Rahman S , et al . Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
8 | Farid M M . Storage of solar energy with phase change[J]. Journal of Solar Energy Research, 1986, 4: 11-29. |
9 | Farid M M , Kanzawa A . Thermal performance of a heat storage module using PCM's with different melting temperatures: mathematical modeling[J]. Journal of Solar Energy Engineering, 1989, 111: 152-157. |
10 | Mosaffa A H , Infante F C A , Talati F , et al . Thermal performance of a multiple PCM thermal storage unit for free cooling[J]. Energy Conversion and Management, 2013, 67: 1-7. |
11 | Mosaffa A H , Garousi F L , Infante F C A , et al . Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications[J]. Renewable Energy, 2014, 68: 452-458. |
12 | Gong Z X , Mujumdar A S . Cyclic heat transfer in a novel storage unit of multiple phase change materials[J]. Applied Thermal Engineering, 1996, 16(10): 807-815. |
13 | Fang M , Chen G . Effects of different multiple PCMs on the performance of a latent thermal energy storage system[J]. Applied Thermal Engineering, 2007, 27: 994-1000. |
14 | Seeniraj R V , Lakshmi N N . Performance enhancement of a solar dynamic LHTS module having both fins and multiple PCMs[J]. Solar Energy, 2008, 82: 535-542. |
15 | Adine H A , El Q H . Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials[J]. Applied Mathematical Modelling, 2009, 33: 2132-2144. |
16 | Kurnia J C , Sasmito A P , Jangam S V , et al . Improved design for heat transfer performance of a novel phase change material (PCM) thermal energy storage (TES)[J]. Applied Thermal Engineering, 2013, 50: 896-907. |
17 | Liu M , Tay N H S , Belusko M , et al . Investigation of cascaded shell and tube latent heat storage systems for solar tower power plants[J]. Energy Procedia, 2015, 69: 913-924. |
18 | Yang L , Zhang X , Xu G . Thermal performance of a solar storage packed bed using spherical capsules filled with PCM having different melting points[J]. Energy and Buildings, 2014, 68: 639-646. |
19 | 杨磊, 张小松 . 多熔点相变材料堆积蓄热床蓄热性能分析[J]. 化工学报, 2012, 63(4): 1032-1037. |
Yang L , Zhang X S . Charge performance of packed bed thermal storage unit with phase change material having different melting points[J]. CIESC Journal, 2012, 63(4): 1032-1037. | |
20 | Wu M , Xu C , He Y . Cyclic behaviors of the molten-salt packed-bed thermal storage system filled with cascaded phase change material capsules[J]. Applied Thermal Engineering, 2016, 93: 1061-1073. |
21 | Cui H , Yuan X , Hou X . Thermal performance analysis for a heat receiver using multiple phase change materials[J]. Applied Thermal Engineering, 2003, 23: 2353-2361. |
22 | Tao Y B , He Y L , Liu Y K , et al . Performance optimization of two-stage latent heat storage unit based on entransy theory[J]. International Journal of Heat and Mass Transfer, 2014, 77: 695-703. |
23 | 王慧儒, 吴慧英 . 最小热阻原理在组合式相变材料蓄热过程优化中的应用[J]. 科学通报, 2015, 60(34): 3377-3385. |
Wang H R , Wu H Y . Application of minimum thermal resistance principle in optimization for melting process with multiple PCMs[J]. Chinese Science Bulletin, 2015, 60(34): 3377-3385. | |
24 | Ezra M , Kozak Y , Dubovsky V , et al . Analysis and optimization of melting temperature span for a multiple-PCM latent heat thermal energy storage unit[J]. Applied Thermal Engineering, 2016, 93: 315-329. |
25 | Xu H J , Zhao C Y . Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model[J]. Renewable Energy, 2016, 86: 228-237. |
26 | Wang H , Liu Z , Wu H . Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array[J]. Energy, 2017, 138: 739-751. |
27 | Watanabe T , Kikuchi H , Kanzawa A . Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures[J]. Heat Recovery Systems and CHP, 1993, 13(1): 57-66. |
28 | Wang J , Ouyang Y , Chen G . Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials[J]. International Journal of Energy Research, 2001, 25: 439-447. |
29 | Michels H , Pitz-Paal R . Cascaded latent heat storage for parabolic trough solar power plants[J]. Solar Energy, 2007, 81: 829-837. |
30 | Peiró G , Gasia J , Miró L , et al . Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage[J]. Renewable Energy, 2015, 83: 729-736. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[5] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[6] | 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061. |
[7] | 孙雄康, 李强. 多级复合芯结构的强化沸腾传热研究[J]. 化工学报, 2022, 73(3): 1127-1135. |
[8] | 张舒蕾, 李冰杰, 蒋健, 董新宇, 刘璐. 凸面恒温基底上固着液滴蒸发特性研究[J]. 化工学报, 2022, 73(12): 5537-5546. |
[9] | 王文松, 杨英英, 陈周林, 杨晴雨, 李帅华, 武卫东. 介观尺度下多孔介质内水结冰相界面演化机制研究[J]. 化工学报, 2022, 73(12): 5343-5354. |
[10] | 赵芷慧, 李鹏, 吴栋梁, 张宏彬, 孙培杰, 黄永华. 节流前过冷度和压力对液氮节流特性的影响[J]. 化工学报, 2021, 72(S1): 106-112. |
[11] | 刘洋, AYUB Iqra, 杨福胜, 吴震, 张早校. 基于金属氢化物高温蓄热的氢热耦合传递机理[J]. 化工学报, 2021, 72(9): 4607-4615. |
[12] | 曹海亮, 张红飞, 左潜龙, 安琪, 张子阳, 刘红贝. 梯形微槽道表面池沸腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111-4120. |
[13] | 沈超, 刘玉娟, 王竹萱, 张东伟, 杨建中, 魏新利. 平行流热管管内两相流动可视化实验研究[J]. 化工学报, 2021, 72(5): 2506-2513. |
[14] | 李梦钖, 高明, 左启蓉, 章立新, 赵玉刚. 过冷壁面液滴中四丁基溴化铵水合物生成的可视化研究[J]. 化工学报, 2021, 72(4): 2094-2101. |
[15] | 田永生, 季万祥, 陈增桥, 王乃华. 大长径比垂直换热管外瞬态池沸腾的研究[J]. 化工学报, 2021, 72(4): 2018-2026. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 532
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 751
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||