化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1532-1541.DOI: 10.11949/j.issn.0438-1157.20180928
收稿日期:
2018-08-15
修回日期:
2019-01-04
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
韩中合
作者简介:
<named-content content-type="corresp-name">李鹏</named-content>(1991—),男,博士研究生,<email>pengli@ncepu.edu.cn</email>|韩中合(1964—),男,博士,教授,<email>hanzhonghe@ncepu.edu.cn</email>
基金资助:
Peng LI(),Zhonghe HAN(
),Xiaoqiang JIA,Zhongkai MEI,Xu HAN
Received:
2018-08-15
Revised:
2019-01-04
Online:
2019-04-05
Published:
2019-04-05
Contact:
Zhonghe HAN
摘要:
向心透平效率随运行参数的变化及工质种类的不同有较大差别,引入向心透平一维分析模型来计算透平效率,分析蒸发温度与冷凝温度对透平效率的影响,比较固定透平效率与动态透平效率有机朗肯循环(ORC)系统的热力性能与经济性能。采用非支配解排序遗传算法(NSGA-Ⅱ)优化ORC系统筛选出最优工质,确定最佳蒸发温度与冷凝温度。同时比较了不同热源温度下固定透平效率和动态透平效率ORC系统的最佳运行参数,分析了透平效率随热源温度的变化。结果表明:透平效率随蒸发温度的降低或者冷凝温度的升高而增大,采用动态透平效率后,系统净输出功随蒸发温度升高而增加趋势减缓,工质排序也发生了变化;对于固定透平效率与动态透平效率ORC系统,经多目标筛选后所确定的最优工质及最佳蒸发温度和冷凝温度均有一定差异,表明若采用固定透平效率会对工质筛选及参数优化造成一定误差;随着热源温度的升高,固定透平效率与动态透平效率ORC系统之间最佳蒸发温度与净输出功差异逐渐增大,说明热源温度越高,采用固定透平效率引起的误差越大。
中图分类号:
李鹏, 韩中合, 贾晓强, 梅中恺, 韩旭. 动态透平效率对有机朗肯循环系统性能的影响[J]. 化工学报, 2019, 70(4): 1532-1541.
Peng LI, Zhonghe HAN, Xiaoqiang JIA, Zhongkai MEI, Xu HAN. Influence of dynamic turbine efficiency on performance of organic Rankine cycle system[J]. CIESC Journal, 2019, 70(4): 1532-1541.
Parameter | Symbol | Value |
---|---|---|
nozzle velocity coefficient | ? | 0.95 |
rotor blade velocity coefficient | ψ | 0.85 |
ratio of wheel diameter | D r | 0.5 |
absolute velocity angle at rotor inlet | α 1 | 15 |
relative velocity angle at rotor outlet | β 2 | 30 |
表1 向心透平初始设计参数
Table 1 Initial parameters for radial-inflow turbine
Parameter | Symbol | Value |
---|---|---|
nozzle velocity coefficient | ? | 0.95 |
rotor blade velocity coefficient | ψ | 0.85 |
ratio of wheel diameter | D r | 0.5 |
absolute velocity angle at rotor inlet | α 1 | 15 |
relative velocity angle at rotor outlet | β 2 | 30 |
Parameter | Value |
---|---|
heat source inlet temperature/K | 433.15 |
heat source outlet temperature/K | 363.15 |
amount of waste heat/MW | 1 |
ambient temperature/K | 293.15 |
ambient pressure/MPa | 1.01 |
pump isentropic efficiency/% | 80 |
interest rate/% | 10 |
plant economic life/a | 20 |
annual plat operation time/h | 7000 |
表2 ORC系统循环参数及经济参数
Table 2 Cycle and economic parameters for simulation of ORC system
Parameter | Value |
---|---|
heat source inlet temperature/K | 433.15 |
heat source outlet temperature/K | 363.15 |
amount of waste heat/MW | 1 |
ambient temperature/K | 293.15 |
ambient pressure/MPa | 1.01 |
pump isentropic efficiency/% | 80 |
interest rate/% | 10 |
plant economic life/a | 20 |
annual plat operation time/h | 7000 |
Working fluid | Molar mass/(g·mol-1) | Normal boiling point/K | Critical pressure/MPa | Critical temperature/K |
---|---|---|---|---|
R236ea | 152.039 | 279.34 | 3.502 | 412.44 |
R114 | 170.921 | 276.741 | 3.257 | 418.83 |
R245fa | 134.048 | 288.29 | 3.651 | 427.16 |
R245ca | 134.049 | 298.28 | 3.925 | 447.57 |
R123 | 152.931 | 300.973 | 3.662 | 456.831 |
isopentane | 72.149 | 300.98 | 3.378 | 460.35 |
pentane | 72.149 | 309.21 | 3.37 | 469.7 |
cyclohexane | 84.161 | 353.886 | 4.075 | 553.64 |
表3 工质物性参数
Table 3 Properties of working fluid candidates
Working fluid | Molar mass/(g·mol-1) | Normal boiling point/K | Critical pressure/MPa | Critical temperature/K |
---|---|---|---|---|
R236ea | 152.039 | 279.34 | 3.502 | 412.44 |
R114 | 170.921 | 276.741 | 3.257 | 418.83 |
R245fa | 134.048 | 288.29 | 3.651 | 427.16 |
R245ca | 134.049 | 298.28 | 3.925 | 447.57 |
R123 | 152.931 | 300.973 | 3.662 | 456.831 |
isopentane | 72.149 | 300.98 | 3.378 | 460.35 |
pentane | 72.149 | 309.21 | 3.37 | 469.7 |
cyclohexane | 84.161 | 353.886 | 4.075 | 553.64 |
1 | Saloux E , Sorin M , Nesreddine H , et al . Reconstruction procedure of the thermodynamic cycle of organic Rankine cycles (ORC) and selection of the most appropriate working fluid[J]. Applied Thermal Engineering, 2018, 129: 628-635. |
2 | 吴玉庭, 赵英昆, 雷标, 等 . 冷却水流量对ORC系统性能影响的实验研究[J].化工学报, 2018, 69(6): 2639-2645. |
Wu Y T , Zhao Y K , Lei B , et al . Effect of cooling water flow rate on power generation of organic Rankine cycle system[J]. CIESC Journal, 2018, 69(6): 2639-2645. | |
3 | Frutiger J , Andreasen J , Liu W , et al . Working fluid selection for organic Rankine cycles – impact of uncertainty of fluid properties[J]. Energy, 2016, 109: 987-997. |
4 | 许俊俊, 罗向龙, 王永真, 等 . ORC工质选择的多级非结构性模糊决策分析[J]. 化工学报, 2015, 66(3): 1051-1058. |
Xu J J , Luo X L , Wang Y Z , et al . Optimum selection of ORC working fluid using multi-level fuzzy optimization and non-structural fuzzy decision[J]. CIESC Journal, 2015, 66(3): 1051-1058. | |
5 | Wang E H , Zhang H G , Fan B Y , et al . Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery[J]. Energy, 2011, 36(5): 3406-3418. |
6 | 顾煜炯, 耿直, 谢典 . 太阳能有机朗肯循环系统性能分析及综合评价[J]. 太阳能学报, 2018, 39(2): 482-490. |
Gu Y J , Geng Z , Xie D . Performance analysis and comprehensive evaluation of organic Rankine cycle system driven by solar energy[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 482-490. | |
7 | El-Emam R S , Dincer I . Exergy and exergoeconomic analyses and optimization of geothermal organic Rankine cycle[J]. Applied Thermal Engineering, 2013, 59(1/2): 435-444. |
8 | Li Y R , Du M T , Wu C M , et al . Economical evaluation and optimization of subcritical organic Rankine cycle based on temperature matching analysis[J]. Energy, 2014, 68(5): 238-247. |
9 | Han Z H , Li P , Han X , et al . Thermo-economic performance analysis of a regenerative superheating organic Rankine cycle for waste heat recovery[J]. Energies, 2017, 10(10): 1593. |
10 | 王漫, 王江峰, 阎哲泉, 等 . 有机工质低温余热发电系统多目标优化设计[J]. 动力工程学报, 2013, 33(4): 387-392. |
Wang M , Wang J F , Yan Z Q , et al . Multi-objective optimization of low-temperature waste-heat ORC power generation systems[J]. Journal of Chinese Society of Power Engineering, 2013, 33(5): 387-392. | |
11 | 王华荣, 徐进良 . 采用BP-GA算法的有机朗肯循环多目标优化[J]. 中国电机工程学报, 2016, 36(12): 3168-3175. |
Wang H R , Xu J L . Multi-objective optimization for organic Rankine cycle using BP-GA algorithm[J]. Proceedings of the CSEE, 2016, 36(12): 3168-3175. | |
12 | Zhang S , Wang H , Tao G , et al . Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88(8): 2740-2754. |
13 | Özahi E , Tozlu A , Abuşoğlu A . Thermoeconomic multi-objective optimization of an organic Rankine cycle (ORC) adapted to an existing solid waste power plant[J]. Energy Conversion and Management, 2018, 168: 308-319. |
14 | Rayegan R , Tao Y X . A procedure to select working fluids for solar organic Rankine cycles (ORCs)[J]. Renewable Energy, 2011, 36(2): 659-670. |
15 | Wang Y Z , Zhao J , Wang Y , et al . Multi-objective optimization and grey relational analysis on configurations of organic Rankine cycle[J]. Applied Thermal Engineering, 2017, 114: 1355-1363. |
16 | Yekoladio P J , Bello-Ochende T , Meyer J P . Thermodynamic analysis and performance optimization of organic Rankine cycles for the conversion of low‐to‐moderate grade geothermal heat[J]. International Journal of Energy Research, 2015, 39(9): 1256-1271. |
17 | Garg P , Orosz M S . Economic optimization of organic Rankine cycle with pure fluids and mixtures for waste heat and solar applications using particle swarm optimization method[J]. Energy Conversion and Management, 2018, 165: 649-668. |
18 | Sun J , Li W . Operation optimization of an organic Rankine cycle (ORC) heat recovery power plant[J]. Applied Thermal Engineering, 2011, 31(11): 2032-2041. |
19 | Song J , Gu C W , Ren X . Influence of the radial-inflow turbine efficiency prediction on the design and analysis of the organic Rankine cycle (ORC) system[J]. Energy Conversion and Management, 2016, 123: 308-316. |
20 | Song J , Gu C W , Ren X . Parametric design and off-design analysis of organic Rankine cycle (ORC) system[J]. Energy Conversion and Management, 2016, 112: 157-165. |
21 | Zhai L , Xu G , Wen J , et al . An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine[J]. Energy Conversion and Management, 2017, 153: 60-70. |
22 | Dong B , Xu G , Li T , et al . Parametric analysis of organic Rankine cycle based on a radial turbine for low-grade waste heat recovery[J]. Applied Thermal Engineering, 2017, 126: 470-479. |
23 | Bejan A , Tsatsaronis G , Moran M , et al . Thermal Design and Optimization[M]. John Wiley & Sons, 1996. |
24 | Xiao L , Wu S Y , Yi T T , et al . Multi-objective optimization of evaporation and condensation temperatures for subcritical organic Rankine cycle[J]. Energy, 2015, 83: 723-733. |
25 | 李燕生, 陆桂林 . 向心透平与离心压气机[M]. 北京:机械工业出版社, 1987. |
Li Y S , Lu G L . Radial-inflow Turbine and Centrifugal Compressor[M]. Beijing: China Machine Press, 1987. | |
26 | 舒士甄, 朱力, 柯玄龄, 等 . 叶轮机械原理[M]. 北京: 清华大学出版社, 1991. |
Shu S Z , Zhu L , Ke X L , et al . Fluid Mechanics and Thermodynamics of Turbomachinery[M]. Beijing: Tsinghua University Press, 1991. | |
27 | Han Z H , Fan W , Zhao R C . Improved thermodynamic design of organic radial-inflow turbine and ORC system thermal performance analysis[J]. Energy Conversion and Management, 2017, 150: 259-268. |
28 | 陈奇成, 徐进良, 苗政 . 中温热源驱动有机朗肯循环工质研究[J]. 中国电机工程学报, 2013, 33(32): 1-7. |
Chen Q C , Xu J L , Miao Z . Working fluid selection for medium temperature organic Rankine cycle[J]. Proceedings of the CSEE, 2013, 33(32): 1-7. | |
29 | Chen Q , Xu J , Chen H . A new design method for Organic Rankine cycles with constraint of inlet and outlet heat carrier fluid temperatures coupling with the heat source[J]. Applied Energy, 2012, 98: 562-573. |
30 | Jones A C . Design and test of a small, high pressure ratio radial turbine[J]. Journal of Turbomachinery, 1996, 118(2): 362-370. |
31 | Feng Y , Hung T C , Greg K , et al . Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery[J]. Energy Conversion and Management, 2015, 106: 859-872. |
[1] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[2] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[3] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[4] | 林渠成, 廖祖维. 基于分解算法的功热交换网络多目标优化[J]. 化工学报, 2022, 73(11): 5047-5055. |
[5] | 柳旭, 许松林, 王燕飞. 原甲酸三甲酯-醋酸萃取精馏全局多目标优化[J]. 化工学报, 2022, 73(10): 4518-4526. |
[6] | 李子航, 王占博, 苗政, 纪献兵. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495. |
[7] | 曹健, 冯新, 吉晓燕, 陆小华. 基于混合工质的多级蒸发ORC理论极限性能研究[J]. 化工学报, 2021, 72(7): 3780-3787. |
[8] | 魏彬, 周鑫, 王耀伟, 郭振莲, 陈小博, 刘熠斌, 杨朝合. 基于改进NSGA-Ⅱ算法的FCC分离系统多目标优化[J]. 化工学报, 2021, 72(5): 2735-2744. |
[9] | 赵杨, 熊伟丽. 基于多策略自适应差分进化算法的污水处理过程多目标优化控制[J]. 化工学报, 2021, 72(4): 2167-2177. |
[10] | 荣杨一鸣, 吴巧仙, 周霞, 方松, 王凯, 邱利民, 植晓琴. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666. |
[11] | 朱鹏飞, 郭磊磊, 尧兢, 杨福胜, 张早校, 吴震. 以生物质为燃料的SOFC和发动机热电联供系统:参数分析和性能优化[J]. 化工学报, 2021, 72(2): 1089-1099. |
[12] | 陈超男, 罗向龙, 杨智, 黄仁龙, 卢沛, 陈健勇, 陈颖. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381. |
[13] | 吴乐, 王竞, 王玉琪, 郑岚. 生物质油与蜡油在FCC装置共炼的多目标优化[J]. 化工学报, 2020, 71(5): 2182-2189. |
[14] | 明勇, 彭艳楠, 苏文, 魏国龙, 王强, 周乃君, 赵力. 闭式热源下混合工质与纯工质的ORC性能比较[J]. 化工学报, 2020, 71(4): 1570-1579. |
[15] | 杨路, 刘硕士, 罗小艳, 杨思宇, 钱宇. MTO烯烃分离过程的多目标操作优化[J]. 化工学报, 2020, 71(10): 4720-4732. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 624
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||