化工学报 ›› 2023, Vol. 74 ›› Issue (5): 1884-1895.DOI: 10.11949/0438-1157.20221492
党玉荣(), 莫春兰(
), 史科锐, 方颖聪, 张子杨, 李作顺
收稿日期:
2022-11-15
修回日期:
2023-04-17
出版日期:
2023-05-05
发布日期:
2023-06-29
通讯作者:
莫春兰
作者简介:
党玉荣(1993—),男,硕士研究生,D1908460831@outlook.com
基金资助:
Yurong DANG(), Chunlan MO(
), Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI
Received:
2022-11-15
Revised:
2023-04-17
Online:
2023-05-05
Published:
2023-06-29
Contact:
Chunlan MO
摘要:
采用R601a/R600作为工质回收工业余热,并以系统的热力学性能(输出功率Wnet、热效率ηth、㶲效率εex)、经济性能(投资成本回收周期ICPP、单位输出功率所需换热面积APR)、环境影响(CO2当量排放ECE、环境㶲代价Exc)为评价指标,采用AHP-和积法确定不同评价指标的权重并结合遗传算法对系统进行综合分析。结果表明,综合评价指标F1的目标函数的权重大小依次为:环境影响>经济性能>热力学性能。当R601a/R600工质配比为0.33%/99.67%,蒸发温度为137.2℃时,Wnet、ηth、εex、APR、ICPP、ECE和Exc分别为62.9 kW、15.8%、48.7%、4.3 m2/kW、6.6 a、25.0 t、4.0 W。得到的ECE和Exc与平衡权重的TOPSIS相比,分别降低了45.9%和57.0%。这说明F1对环境影响更为重视,能根据不同权重给予实际工程更多的参考方案,比传统TOPSIS更有指导意义。
中图分类号:
党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895.
Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture[J]. CIESC Journal, 2023, 74(5): 1884-1895.
工质 | 化学式 | M/(kg/kmol) | Tcri/℃ | pcri/MPa | GWP(100 a) | ODP | TLV_TWA |
---|---|---|---|---|---|---|---|
R601a(异戊烷) | C5H12 | 72.15 | 187.2 | 3.38 | 20 | 0 | 600 |
R600(丁烷) | C4H10 | 58.12 | 152.0 | 3.80 | 20 | 0 | 800 |
表 1 工质的基本物性[21]
Table 1 Physical properties of working fluids[21]
工质 | 化学式 | M/(kg/kmol) | Tcri/℃ | pcri/MPa | GWP(100 a) | ODP | TLV_TWA |
---|---|---|---|---|---|---|---|
R601a(异戊烷) | C5H12 | 72.15 | 187.2 | 3.38 | 20 | 0 | 600 |
R600(丁烷) | C4H10 | 58.12 | 152.0 | 3.80 | 20 | 0 | 800 |
部件 | 能量平衡等式 |
---|---|
蒸发器 | |
泵 | |
汽轮机 | |
冷凝器 |
表2 ORC系统部件的能量平衡等式
Table 2 Energy equations of ORC components
部件 | 能量平衡等式 |
---|---|
蒸发器 | |
泵 | |
汽轮机 | |
冷凝器 |
Item | T4/℃ | T1/℃ | p2/MPa | Qeva/kW | Wnet/kW | ηth/% |
---|---|---|---|---|---|---|
R134[ | 49.63 | 28.08 | 2.076 | 177.77 | 14.83 | 8.30 |
simulation | 49.62 | 28.08 | 2.076 | 203.76 | 15.62 | 8.36 |
error/% | 0.02 | 0 | 0 | 0.11 | 0.34 | 0.72 |
表 3 本模型与文献模型[29]的比较
Table 3 Comparison of the present work with the literature[29]
Item | T4/℃ | T1/℃ | p2/MPa | Qeva/kW | Wnet/kW | ηth/% |
---|---|---|---|---|---|---|
R134[ | 49.63 | 28.08 | 2.076 | 177.77 | 14.83 | 8.30 |
simulation | 49.62 | 28.08 | 2.076 | 203.76 | 15.62 | 8.36 |
error/% | 0.02 | 0 | 0 | 0.11 | 0.34 | 0.72 |
参数 | Wnet | ηth | εex | APR | ICPP | ECE | Exc | 权重 |
---|---|---|---|---|---|---|---|---|
Wnet | 1 | 2 | 2 | 1/4 | 1/4 | 1/5 | 1/5 | ω1 |
ηth | 1/2 | 1 | 1 | 1/3 | 1/3 | 1/7 | 1/7 | ω2 |
εex | 1/2 | 1 | 1 | 1/3 | 1/3 | 1/7 | 1/7 | ω3 |
APR | 4 | 3 | 3 | 1 | 1 | 1/2 | 1/2 | ω4 |
ICPP | 4 | 3 | 3 | 1 | 1 | 1/2 | 1/2 | ω5 |
ECE | 5 | 7 | 7 | 2 | 2 | 1 | 1 | ω6 |
Exc | 5 | 7 | 7 | 2 | 2 | 1 | 1 | ω7 |
表4 不同目标函数之间的成对比较
Table 4 Pairwise comparison between two sub goal objectives
参数 | Wnet | ηth | εex | APR | ICPP | ECE | Exc | 权重 |
---|---|---|---|---|---|---|---|---|
Wnet | 1 | 2 | 2 | 1/4 | 1/4 | 1/5 | 1/5 | ω1 |
ηth | 1/2 | 1 | 1 | 1/3 | 1/3 | 1/7 | 1/7 | ω2 |
εex | 1/2 | 1 | 1 | 1/3 | 1/3 | 1/7 | 1/7 | ω3 |
APR | 4 | 3 | 3 | 1 | 1 | 1/2 | 1/2 | ω4 |
ICPP | 4 | 3 | 3 | 1 | 1 | 1/2 | 1/2 | ω5 |
ECE | 5 | 7 | 7 | 2 | 2 | 1 | 1 | ω6 |
Exc | 5 | 7 | 7 | 2 | 2 | 1 | 1 | ω7 |
参数 | 综合性能指标F1 | 综合性能指标F2 | TOPSIS[ |
---|---|---|---|
权重(ω1∶ω2∶ω3∶ω4∶ω5∶ω6∶ω7) | 5.5∶4.1∶4.1∶14.6∶14.6∶28.6∶28.6 | 14.3∶14.3∶14.3∶14.3∶14.3∶14.3∶14.3 | — |
T2/℃ | 137.2 | 119.1 | 112.3 |
mf /% | 0.33 | 12.4 | 8.6 |
Wnet /kW | 62.9 | 101.1 | 108.3 |
ηth /% | 15.8 | 14.8 | 14.0 |
εex /% | 48.7 | 48.9 | 47.6 |
APR /(m2/kW) | 4.3 | 4.7 | 4.8 |
ICPP /a | 6.6 | 6.1 | 6.3 |
ECE /t | 25.0 | 42.1 | 46.2 |
Exc /W | 4.0 | 8.8 | 9.3 |
表 5 综合性能指标F与TOPSIS[7]优化结果对比
Table 5 Optimization results of comprehensive performance index F compared with TOPSIS[7]
参数 | 综合性能指标F1 | 综合性能指标F2 | TOPSIS[ |
---|---|---|---|
权重(ω1∶ω2∶ω3∶ω4∶ω5∶ω6∶ω7) | 5.5∶4.1∶4.1∶14.6∶14.6∶28.6∶28.6 | 14.3∶14.3∶14.3∶14.3∶14.3∶14.3∶14.3 | — |
T2/℃ | 137.2 | 119.1 | 112.3 |
mf /% | 0.33 | 12.4 | 8.6 |
Wnet /kW | 62.9 | 101.1 | 108.3 |
ηth /% | 15.8 | 14.8 | 14.0 |
εex /% | 48.7 | 48.9 | 47.6 |
APR /(m2/kW) | 4.3 | 4.7 | 4.8 |
ICPP /a | 6.6 | 6.1 | 6.3 |
ECE /t | 25.0 | 42.1 | 46.2 |
Exc /W | 4.0 | 8.8 | 9.3 |
1 | Yang M H. Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine[J]. Energy Conversion and Management, 2018, 162: 189-202. |
2 | Cui X Y, Zhang H Y, Guo J F, et al. Analysis of two-stage waste heat recovery based on natural gas-fired boiler[J]. International Journal of Energy Research, 2019, 43(14): 8898-8912. |
3 | Cui Z Y, Du Q, Gao J M. Development of integrated technology for waste heat recovery from humid flue gas of hot water boiler[J]. International Journal of Energy Research, 2021, 45(13): 19560-19573. |
4 | Li X Y, Xu B, Tian H, et al. Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111207. |
5 | Lu P, Luo X L, Wang J, et al. Thermo-economic design, optimization, and evaluation of a novel zeotropic ORC with mixture composition adjustment during operation[J]. Energy Conversion and Management, 2021, 230: 113771. |
6 | Valencia G, Fontalvo A, Forero J D. Optimization of waste heat recovery in internal combustion engine using a dual-loop organic Rankine cycle: thermo-economic and environmental footprint analysis[J]. Applied Thermal Engineering, 2021, 182: 116109. |
7 | Ouyang T C, Su Z X, Zhao Z K, et al. Advanced exergo-economic schemes and optimization for medium-low grade waste heat recovery of marine dual-fuel engine integrated with accumulator[J]. Energy Conversion and Management, 2020, 226: 113577. |
8 | Miao Z, Li Z H, Zhang K, et al. Selection criteria of zeotropic mixtures for subcritical organic Rankine cycle based on thermodynamic and thermo-economic analysis[J]. Applied Thermal Engineering, 2020, 180: 115837. |
9 | 汪健生, 岳开红. 窄点温差匹配对ORC系统性能的影响[J]. 机械工程学报, 2017, 53(8): 158-165. |
Wang J S, Yue K H. Effect of pinch point temperature difference assignment on the thermal performance of ORC system[J]. Journal of Mechanical Engineering, 2017, 53(8): 158-165. | |
10 | Wang J S, Diao M Z, Yue K H. Optimization on pinch point temperature difference of ORC system based on AHP-Entropy method[J]. Energy, 2017, 141: 97-107. |
11 | Reshaeel M, Javed A, Jamil A, et al. Multiparametric optimization of a reheated organic Rankine cycle for waste heat recovery based repowering of a degraded combined cycle gas turbine power plant[J]. Energy Conversion and Management, 2022, 254: 115237. |
12 | Imran M, Usman M, Park B S, et al. Comparative assessment of organic Rankine cycle integration for low temperature geothermal heat source applications[J]. Energy, 2016, 102: 473-490. |
13 | 顾煜炯, 耿直, 谢典. 太阳能有机朗肯循环系统性能分析及综合评价[J]. 太阳能学报, 2018, 39(2): 482-490. |
Gu Y J, Geng Z, Xie D. Performance analysis and comprehensive evaluation of organic Rankine cycle system driven by solar energy[J]. Acta Energiae Solaris Sinica, 2018, 39(2): 482-490. | |
14 | Georgousopoulos S, Braimakis K, Grimekis D, et al. Thermodynamic and techno-economic assessment of pure and zeotropic fluid ORCs for waste heat recovery in a biomass IGCC plant[J]. Applied Thermal Engineering, 2021, 183: 116202. |
15 | 顾煜炯, 陈礼敏, 耿直. 不同太阳能热源下混合工质ORC系统性能分析[J]. 发电技术, 2018, 39(2): 177-187. |
Gu Y J, Chen L M, Geng Z. Performance analysis of ORC system for non-zeotropic mixtures under different solar energy sources[J]. Power Generation Technology, 2018, 39(2): 177-187. | |
16 | Liu P, Shu G Q, Tian H, et al. Preliminary experimental comparison and feasibility analysis of CO2/R134a mixture in organic Rankine cycle for waste heat recovery from diesel engines[J]. Energy Conversion and Management, 2019, 198: 111776. |
17 | Li J, Duan Y Y, Yang Z, et al. Exergy analysis of novel dual-pressure evaporation organic Rankine cycle using zeotropic mixtures[J]. Energy Conversion and Management, 2019, 195: 760-769. |
18 | Shahrooz M, Lundqvist P, Nekså P. Performance of binary zeotropic mixtures in organic Rankine cycles (ORCs)[J]. Energy Conversion and Management, 2022, 266: 115783. |
19 | Wang E H, Zhang M R, Meng F X, et al. Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine[J]. Energy, 2022, 243: 123097. |
20 | 林蝶蝶. 有机朗肯循环的综合性能评价与工质选择[D]. 天津: 天津大学, 2016. |
Lin D D. Comprehensive performance evaluation of organic Rankine cycle and working fluid selection[D]. Tianjin: Tianjin University, 2016. | |
21 | Li J, Liu Q, Duan Y Y, et al. Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation[J]. Applied Energy, 2017, 190: 376-389. |
22 | Geng D H, Du Y H, Yang R L. Performance analysis of an organic Rankine cycle for a reverse osmosis desalination system using zeotropic mixtures[J]. Desalination, 2016, 381: 38-46. |
23 | Sohrabi A, Behbahaninia A, Sayadi S. Thermodynamic optimization and comparative economic analysis of four organic Rankine cycle configurations with a zeotropic mixture[J]. Energy Conversion and Management, 2021, 250: 114872. |
24 | Sun Z, Aziz M. Comparative thermodynamic and techno-economic assessment of green methanol production from biomass through direct chemical looping processes[J]. Journal of Cleaner Production, 2021, 321: 129023. |
25 | Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization[M]. Hoboken, NJ: Wiley-Interscience, 1995. |
26 | Ding Y, Liu C, Zhang C, et al. Exergoenvironmental model of organic Rankine cycle system including the manufacture and leakage of working fluid[J]. Energy, 2018, 145: 52-64. |
27 | Zhang C, Liu C, Xu X X, et al. Energetic, exergetic, economic and environmental (4E) analysis and multi-factor evaluation method of low GWP fluids in trans-critical organic Rankine cycles[J]. Energy, 2019, 168: 332-345. |
28 | Dewulf J, van Langenhove H, Dirckx J. Exergy analysis in the assessment of the sustainability of waste gas treatment systems[J]. Science of the Total Environment, 2001, 273(1/2/3): 41-52. |
29 | Baik Y J, Kim M, Chang K C, et al. A comparative study of power optimization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles[J]. Renewable Energy, 2013, 54: 78-84. |
30 | Ouyang T C, Su Z X, Huang G C, et al. Modeling and optimization of a combined cooling, cascaded power and flue gas purification system in marine diesel engines[J]. Energy Conversion and Management, 2019, 200: 112102. |
[1] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[2] | 李子航, 王占博, 苗政, 纪献兵. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495. |
[3] | 曹健, 冯新, 吉晓燕, 陆小华. 基于混合工质的多级蒸发ORC理论极限性能研究[J]. 化工学报, 2021, 72(7): 3780-3787. |
[4] | 荣杨一鸣, 吴巧仙, 周霞, 方松, 王凯, 邱利民, 植晓琴. 空分系统空气压缩余热自利用性能优化研究[J]. 化工学报, 2021, 72(3): 1654-1666. |
[5] | 陈超男, 罗向龙, 杨智, 黄仁龙, 卢沛, 陈健勇, 陈颖. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381. |
[6] | 明勇, 彭艳楠, 苏文, 魏国龙, 王强, 周乃君, 赵力. 闭式热源下混合工质与纯工质的ORC性能比较[J]. 化工学报, 2020, 71(4): 1570-1579. |
[7] | 王羽鹏, 梁俊伟, 罗向龙, 李逸帆, 陈健勇, 陈颖. 基于神经网络的有机朗肯循环过程及循环性能计算方法[J]. 化工学报, 2019, 70(9): 3256-3266. |
[8] | 侯中兰, 魏新利, 马新灵, 孟祥睿. 循环水流量对ORC余热发电系统性能影响的试验分析[J]. 化工学报, 2019, 70(9): 3283-3290. |
[9] | 陈玉婷, 徐燕燕, 王磊, 叶爽, 黄伟光. 蒸发器换热过程对ORC系统混合工质选择和运行工况的影响[J]. 化工学报, 2019, 70(5): 1723-1733. |
[10] | 李鹏, 韩中合, 贾晓强, 梅中恺, 韩旭. 动态透平效率对有机朗肯循环系统性能的影响[J]. 化工学报, 2019, 70(4): 1532-1541. |
[11] | 游怀亮, 韩吉田, 刘洋. 基于SOFC/MGT/ORC的微型冷热电联供系统性能分析[J]. 化工学报, 2018, 69(S2): 300-308. |
[12] | 潘权稳, 王如竹. 热驱动的双模式冷电联供系统的性能分析[J]. 化工学报, 2018, 69(S2): 373-378. |
[13] | 吴玉庭, 赵英昆, 雷标, 孟庆鹏, 陈如梦, 智瑞平, 马重芳. 冷却水流量对ORC系统性能影响的实验研究[J]. 化工学报, 2018, 69(6): 2639-2645. |
[14] | 韩中合, 梅中恺, 李鹏. 变透平效率有机朗肯循环工质筛选及多目标优化[J]. 化工学报, 2018, 69(6): 2603-2611. |
[15] | 黄仁龙, 罗向龙, 梁志辉, 陈颖. 基于分液冷凝的R245fa/pentane混合工质朗肯循环多目标优化[J]. 化工学报, 2018, 69(5): 2040-2048. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||