化工学报 ›› 2023, Vol. 74 ›› Issue (8): 3502-3512.DOI: 10.11949/0438-1157.20230371
张曼铮(), 肖猛, 闫沛伟, 苗政(), 徐进良, 纪献兵
收稿日期:
2023-04-14
修回日期:
2023-06-16
出版日期:
2023-08-25
发布日期:
2023-10-18
通讯作者:
苗政
作者简介:
张曼铮(1998—),女,硕士研究生,zhangmanzheng@ncepu.edu.cn
基金资助:
Manzheng ZHANG(), Meng XIAO, Peiwei YAN, Zheng MIAO(), Jinliang XU, Xianbing JI
Received:
2023-04-14
Revised:
2023-06-16
Online:
2023-08-25
Published:
2023-10-18
Contact:
Zheng MIAO
摘要:
危险废弃物焚烧处理产生的热量除了用于满足自身系统热量需求和损失外,其余大部分热量可以作为低温发电系统热源。利用该余热锅炉产生的饱和蒸汽作为潜热型热源驱动有机朗肯循环系统做功,并基于热力学和热经济学分析进行工质筛选。研究进一步对危废焚烧系统的基础流程进行优化,并分析了回热对ORC系统的热力学性能的影响。结果表明,工质Benzene表现最优,且危废系统优化后做功能力的提升,相较于基础结构增加了24.5%,回热后ORC系统净输出功提升了19.98%,热效率提升了35.57%,㶲效率提升了19.99%。
中图分类号:
张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512.
Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system[J]. CIESC Journal, 2023, 74(8): 3502-3512.
工质名称 | GWP (100年) | ODP | 临界温度/℃ | 蒸发压力/kPa | 冷凝压力/kPa | 热源出口 温度/℃ | 膨胀机出口温度/℃ |
---|---|---|---|---|---|---|---|
Isopentane | 约20 | 0 | 187.20 | 3098.74 | 141.15 | 49.60 | 88.47 |
Pentane | 约20 | 0 | 196.55 | 2676.09 | 107.22 | 49.24 | 93.617 |
R141b | 725 | 0.12 | 204.35 | 3405.28 | 129.11 | 50.81 | 65.94 |
R113 | 6130 | 1 | 214.06 | 2369.17 | 72.71 | 49.12 | 92.40 |
Isohexane | 0 | — | 224.55 | 1801.04 | 45.16 | 47.85 | 112.70 |
Hexane | 约20 | 0 | 234.67 | 1535.66 | 33.26 | 47.85 | 111.85 |
Cyclopentane | — | 0 | 238.57 | 2275.79 | 70.14 | 49.65 | 86.46 |
Heptane | 约20 | 0 | 266.98 | 822.54 | 10.69 | 47.27 | 119.53 |
Isooctane | 约20 | 0 | 270.85 | 756.98 | 10.97 | 46.61 | 129.41 |
Benzene | — | — | 288.87 | 1219.83 | 23.26 | 49.40 | 81.37 |
Octane | 约20 | 0 | 296.17 | 455.71 | 3.49 | 47.01 | 123.85 |
C1cc6 | — | 0 | 299.05 | 731.90 | 10.78 | 47.55 | 116.95 |
表1 工质物性信息及循环参数
Table 1 Working fluid physical property information and cycle parameters
工质名称 | GWP (100年) | ODP | 临界温度/℃ | 蒸发压力/kPa | 冷凝压力/kPa | 热源出口 温度/℃ | 膨胀机出口温度/℃ |
---|---|---|---|---|---|---|---|
Isopentane | 约20 | 0 | 187.20 | 3098.74 | 141.15 | 49.60 | 88.47 |
Pentane | 约20 | 0 | 196.55 | 2676.09 | 107.22 | 49.24 | 93.617 |
R141b | 725 | 0.12 | 204.35 | 3405.28 | 129.11 | 50.81 | 65.94 |
R113 | 6130 | 1 | 214.06 | 2369.17 | 72.71 | 49.12 | 92.40 |
Isohexane | 0 | — | 224.55 | 1801.04 | 45.16 | 47.85 | 112.70 |
Hexane | 约20 | 0 | 234.67 | 1535.66 | 33.26 | 47.85 | 111.85 |
Cyclopentane | — | 0 | 238.57 | 2275.79 | 70.14 | 49.65 | 86.46 |
Heptane | 约20 | 0 | 266.98 | 822.54 | 10.69 | 47.27 | 119.53 |
Isooctane | 约20 | 0 | 270.85 | 756.98 | 10.97 | 46.61 | 129.41 |
Benzene | — | — | 288.87 | 1219.83 | 23.26 | 49.40 | 81.37 |
Octane | 约20 | 0 | 296.17 | 455.71 | 3.49 | 47.01 | 123.85 |
C1cc6 | — | 0 | 299.05 | 731.90 | 10.78 | 47.55 | 116.95 |
图8 BORC和RORC系统在采用蒸汽和烟气消白不同蒸汽量驱动下的工质筛选情况
Fig.8 BORC and RORC systems with different steam volumes driven by steam and flue gas whitening for the screening of the working fluid
1 | Pan M Z, Chen X T, Li X Y. Multi-objective analysis and optimization of cascade supercritical CO2 cycle and organic Rankine cycle systems for waste-to-energy power plant[J]. Applied Thermal Engineering, 2022, 214: 118882. |
2 | 高林, 张旺, 周云峰, 等. 危险废物焚烧余热锅炉研究进展[J]. 高校化学工程学报, 2021, 35(6): 943-954. |
Gao L, Zhang W, Zhou Y F, et al. Research progress of waste heat boiler for hazardous waste incineration[J]. Journal of Chemical Engineering of Chinese Universities, 2021, 35(6): 943-954. | |
3 | Buekens A. SpringerBriefs in Applied Sciences and Technology [M]. New York: Springer, 2013:106. |
4 | Chen H, Zhao L, Cong H F, et al. Synthesis of waste heat recovery using solar organic Rankine cycle in the separation of benzene/toluene/p-xylene process[J]. Energy, 2022, 255: 124443. |
5 | Yu H S, Helland H, Yu X J, et al. Optimal design and operation of an organic Rankine cycle (ORC) system driven by solar energy with sensible thermal energy storage[J]. Energy Conversion and Management, 2021, 244: 114494. |
6 | Peris B, Navarro-Esbrí J, Mateu-Royo C, et al. Thermo-economic optimization of small-scale organic Rankine cycle: a case study for low-grade industrial waste heat recovery[J]. Energy, 2020, 213: 118898. |
7 | Kumar A, Rakshit D. A critical review on waste heat recovery utilization with special focus on organic Rankine cycle applications[J]. Cleaner Engineering and Technology, 2021, 5: 100292. |
8 | Mahmoudi A, Fazli M, Morad M R. A recent review of waste heat recovery by organic Rankine cycle[J]. Applied Thermal Engineering, 2018, 143: 660-675. |
9 | Imran M, Usman M, Park B S, et al. Comparative assessment of organic Rankine cycle integration for low temperature geothermal heat source applications[J]. Energy, 2016, 102: 473-490. |
10 | Bahrami M, Pourfayaz F, Kasaeian A. Low global warming potential (GWP) working fluids (WFs) for organic Rankine cycle (ORC) applications[J]. Energy Reports, 2022, 8: 2976-2988. |
11 | Pili R, Bojer Jørgensen S, Haglind F. Multi-objective optimization of organic Rankine cycle systems considering their dynamic performance[J]. Energy, 2022, 246: 123345. |
12 | 曹健, 冯新, 吉晓燕, 等. 基于混合工质的多级蒸发ORC理论极限性能研究[J]. 化工学报, 2021, 72(7): 3780-3787. |
Cao J, Feng X, Ji X Y, et al. Study on the theoretical limit performance of multi-pressure evaporation ORC based on zeotropic mixture[J]. CIESC Journal, 2021, 72(7): 3780-3787. | |
13 | Ashwni, Rawat P, Sherwani A F, et al. Advanced exergy, economic, and environmental evaluation of an organic Rankine cycle driven dual evaporators vapour-compression refrigeration system using organic fluids[J]. International Journal of Refrigeration, doi:10.1016/j.ijrefrig.2023.02.002 . |
14 | Miao Z, Zhang K, Wang M X, et al. Thermodynamic selection criteria of zeotropic mixtures for subcritical organic Rankine cycle[J]. Energy, 2019, 167: 484-497. |
15 | Miao Z, Li Z H, Zhang K, et al. Selection criteria of zeotropic mixtures for subcritical organic Rankine cycle based on thermodynamic and thermo-economic analysis[J]. Applied Thermal Engineering, 2020, 180: 115837. |
16 | 李子航, 王占博, 苗政, 等. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495. |
Li Z H, Wang Z B, Miao Z, et al. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle[J]. CIESC Journal, 2021, 72(9): 4487-4495. | |
17 | Özcan Z, Ekici Ö. A novel working fluid selection and waste heat recovery by an exergoeconomic approach for a geothermally sourced ORC system[J]. Geothermics, 2021, 95: 102151. |
18 | Borunda M, Jaramillo O A, Dorantes R, et al. Organic Rankine cycle coupling with a parabolic trough solar power plant for cogeneration and industrial processes[J]. Renewable Energy, 2016, 86: 651-663. |
19 | Boretti A. Recovery of exhaust and coolant heat with R245fa organic Rankine cycles in a hybrid passenger car with a naturally aspirated gasoline engine[J]. Applied Thermal Engineering, 2012, 36: 73-77. |
20 | Zhang X A, Wang X, Cai J W, et al. Operation strategy of a multi-mode organic Rankine cycle system for waste heat recovery from engine cooling water[J]. Energy, 2023, 263: 125934. |
21 | Carcasci C, Ferraro R, Miliotti E. Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines[J]. Energy, 2014, 65: 91-100. |
22 | Mikielewicz D, Wajs J, Ziółkowski P, et al. Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat[J]. Energy, 2016, 97: 11-19. |
23 | Kong R, Deethayat T, Asanakham A, et al. Thermodynamic performance analysis of a R245fa organic Rankine cycle (ORC) with different kinds of heat sources at evaporator[J]. Case Studies in Thermal Engineering, 2019, 13: 100385. |
24 | 明勇, 彭艳楠, 苏文, 等. 闭式热源下混合工质与纯工质的ORC性能比较[J]. 化工学报, 2020, 71(4): 1570-1579. |
Ming Y, Peng Y N, Su W, et al. Thermodynamic performance comparison of ORC between mixtures and pure fluids under closed heat source[J]. CIESC Journal, 2020, 71(4): 1570-1579. | |
25 | Anvari S, Jafarmadar S, Khalilarya S. Proposal of a combined heat and power plant hybridized with regeneration organic Rankine cycle: energy-exergy evaluation[J]. Energy Conversion and Management, 2016, 122: 357-365. |
26 | Feng Y Q, Wang X, Niaz H, et al. Experimental comparison of the performance of basic and regenerative organic Rankine cycles[J]. Energy Conversion and Management, 2020, 223: 113459. |
27 | Chen Z L, Lin X Q, Lu S Y, et al. Suppressing formation pathway of PCDD/Fs by S-N-containing compound in full-scale municipal solid waste incinerators[J]. Chemical Engineering Journal, 2019, 359: 1391-1399. |
28 | Niu Y Q, Wen L P, Guo X, et al. Co-disposal and reutilization of municipal solid waste and its hazardous incineration fly ash[J]. Environment International, 2022, 166: 107346. |
29 | Zhan M X, Chen T, Lin X Q, et al. Suppression of dioxins after the post-combustion zone of MSWIs[J]. Waste Management, 2016, 54: 153-161. |
30 | Yao E R, Zhong L K, Li R X, et al. 4E analysis and optimization of a novel combined cooling, heating and power system integrating compressed air and chemical energy storage with internal combustion engine[J]. Journal of Energy Storage, 2023, 62: 106777. |
31 | Hærvig J, Sørensen K, Condra T J. Guidelines for optimal selection of working fluid for an organic Rankine cycle in relation to waste heat recovery[J]. Energy, 2016, 96: 592-602. |
32 | Vetter C, Wiemer H J, Kuhn D. Comparison of sub- and supercritical organic Rankine cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency[J]. Applied Thermal Engineering, 2013, 51(1/2): 871-879. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[5] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[13] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[14] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[15] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 332
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||