化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4410-4419.DOI: 10.11949/0438-1157.20190522
收稿日期:
2019-05-19
修回日期:
2019-06-15
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
巩有奎
作者简介:
巩有奎(1977—),男,博士,副教授,基金资助:
Youkui GONG1,2(),Yongzhen PENG2
Received:
2019-05-19
Revised:
2019-06-15
Online:
2019-11-05
Published:
2019-11-05
Contact:
Youkui GONG
摘要:
以生活污水为处理对象,采用碳纤维填料制成序批式生物膜反应器(sequencing batch biofilm reactor,SBBR),采用N2+O2联合曝气的方式,通过改变N2和O2的比例,稳定系统内DO浓度为1.5 mg/L,考察不同曝气强度(30、20和10 L/h)下系统脱氮性能及N2O释放特性。异养菌和硝化菌共生于生物膜内,异养菌位于外层,硝化菌位于内层,曝气强度降低有利于外部异养菌大量增殖,生物膜厚度增加。曝气强度为30 L/h和10 L/h条件下,SBBR系统
中图分类号:
巩有奎, 彭永臻. 曝气强度对SBBR同步生物脱氮及N2O释放影响[J]. 化工学报, 2019, 70(11): 4410-4419.
Youkui GONG, Yongzhen PENG. Effect of aeration intensity on simultaneous biological nitrogen removal and N2O release from SBBR[J]. CIESC Journal, 2019, 70(11): 4410-4419.
编号 | 添加抑制剂 | 实验目的 | 耗氧速率(SOUR) |
---|---|---|---|
1 | — | 测定SBBR系统微生物总SOUR | SOUR1 |
2 | ATU | 抑制AOB活性 | SOUR2 |
3 | NaClO3 | 抑制NOB活性 | SOUR3 |
4 | ATU+ NaClO3 | 同时抑制AOB和NOB的活性 | SOUR4 |
表1 不同菌群比耗氧速率(SOUR)试验过程
Table 1 Process of SOUR for different bacteria
编号 | 添加抑制剂 | 实验目的 | 耗氧速率(SOUR) |
---|---|---|---|
1 | — | 测定SBBR系统微生物总SOUR | SOUR1 |
2 | ATU | 抑制AOB活性 | SOUR2 |
3 | NaClO3 | 抑制NOB活性 | SOUR3 |
4 | ATU+ NaClO3 | 同时抑制AOB和NOB的活性 | SOUR4 |
图2 不同曝气强度下SBBR反应器运行性能NH4+-NRE—氨氮去除率;TNRE—总氮去除率;SNDRE—同步脱氨效率;N2O-N/NH4+-Nremoval—氨氮产率
Fig.2 Performance of nitrogen removal in SBBR under different aeration intensity
图3 不同曝气强度同步反硝化SBBR系统的N2O释放过程[11]
Fig.3 N2O production and reduction in simutaneous nitrification and denitrificaiton process in a SBBR under different aeration intensity [11]
1 | RavishankaraA R, DanielJ S, PortmannR W. Nitrous oxide(N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. |
2 | KongQ, WangZ, NiuP, et al. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process[J]. Bioresource Technology, 2016, 210: 94-100. |
3 | YeL, NiB J, LawY Y, et al. A novel methodology to quantify nitrous oxide emissions from full-scale wastewater treatment systems with surface aerators[J]. Water Research, 2014, 48(1): 257-268. |
4 | KampschreurM J, TemminkH, KleerebezemR, et al. Nitrous oxide emission during wastewater treatment [J]. Water Research, 2009, 43(17): 4093-4103. |
5 | WangJ, RongH, ZhangC. Evaluation of the impact of dissolved oxygen concentration on biofilm microbial community in sequencing batch biofilm reactor[J]. Journal of Bioscience and Bioengineering, 2018, 125(5): 532-542. |
6 | ZhaoJ, FengL, YangG, et al. Development of simultaneous nitrification- denitrification (SND) in biofilm reactors with partially coupled a novel biodegradable carrier for nitrogen-rich water purification[J]. Bioresource Technology, 2017, 243: 800-809. |
7 | HanY, LiuJ, GuoX, et al. Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size[J]. Bioresource Technology, 2012, 124(11): 252-258. |
8 | WenQ, ChenZ, ShiH. T-RFLP detection of nitrifying bacteria in a fluidized bed reactor of achieving simultaneous nitrification- denitrification[J]. Chemosphere, 2008, 71(9): 1683-1692. |
9 |
StefanoM, GiaimeT, GiovannimatteoE. Evaluation of nitrous oxide gaseous emissions from a partial nitritation reactor operating under different conditions[J]. Desalination and Water Treatment, 2018, DOI: 10.5004/dwt.2018.22934.
DOI |
10 | TodtD, DorschP. Mechanism leading to N2O production in wastewater treating biofilm systems[J]. Reviews in Environmental Science and Bio/Technology, 2016, 15(3): 355-378. |
11 | SabbaF, TeradaA, WellsG, et al. Nitrous oxide emissions from biofilm processes for wastewater treatment[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9815-9829. |
12 | KinhC, SuenagaT, HoriT, et al. Counter-diffusion biofilms have lower N2O emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: Insights from depth-profile analysis[J].Water Research, 2017, 124(1): 363-371. |
13 | HeQ, ChenL, ZhangS. Hydrodynamic shear force shaped the microbial community and function in the aerobic granular sequencing batch reactors for low carbon to nitrogen (C/N)municipal wastewater treatment[J]. Bioresource Technology, 2019, 271(1): 48-58. |
14 | LiuY, TayJ H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36(7), 1653-1665. |
15 | HeQ, ChenL, ZhangS. Simultaneous nitrification, denitrification and phosphorus removal in aerobic granular sequencing batch reactors with high aeration intensity: impact of aeration time[J]. Bioresource Technology, 2018, 263: 214-222. |
16 | 郭海燕, 郭祯, 柳志刚, 等. 不同曝气强度下SBMBBR和SBR脱氮除磷性能对比研究[J]. 环境科学学报, 2012, 32(3): 568-576. |
GuoH Y, GuoZ, LiuZ G, et al. Characteristics of nitrogen and phosphorus removal in SBR and SBMBBR with different aeration rates[J]. Acta Scientiae Circumstantiae, 2012, 32(3): 568-576. | |
17 | APHA(American Public Health Association). Standard Methods for the Examination of Water and Wastewater[M]. Baltimore: Port City Press, 1998. |
18 | OehmenA, Keller-LehmannB, ZengR J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems [J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136. |
19 | 张建华, 彭永臻, 张淼, 等. 同步硝化反硝化SBBR处理低C/N比生活污水的启动与稳定运行[J]. 化工学报, 2016, 67(11): 4817-4824. |
ZhangJ H, PengY Z, ZhangM, et al. Start-up and steady operation of simultaneous nitrification and denitrification in SBBR treating low C/N ratio domestic wastewater[J]. CIESC Journal, 2016, 67(11): 4817-4824. | |
20 | YangQ, LiuX H, PengC Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater: main sources and control method[J]. Environmental Science & Technology, 2009, 43(24): 9400-9406. |
21 | GongY K, WangS H, WangS, et al. Nitrous oxide production from sequencing batch reactor sludge under nitrifying conditions: effect of nitrite concentrations[J]. Environmental Technology, 2012, 33(4): 401-408. |
22 | 王荣昌, 肖帆, 赵建夫. 生物膜厚度对膜曝气生物膜反应器硝化性能的影响[J]. 高校化学工程学报, 2015, 29(1): 151-158. |
WangR C, XiaoF, ZhaoJ F. Effects of biofilm thickness on nitrification performance of membrane-aerated biofilm reactors[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(1): 151-158. | |
23 | BradfordM M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry, 1976, 72(1): 248-254. |
24 | DuboisM, GillesK A, HamiltonJ K, et al. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350-356. |
25 | 赵青, 卞伟, 李军, 等. DO/NH4+-NN实现短程硝化过程中生物膜特性[J]. 环境科学, 2018, 39(3): 1278-1285. |
ZhaoQ, BianW, LiJ, et al. Characteristics of biofilm during the transition process of complete nitrification and partial nitrification[J]. Environmental Science, 2018, 39(3): 1278-1285. | |
26 | EldyastiA, NakhlaG, ZhuJ. Influence of biofilm thickness on nitrous oxide (N2O) missions from denitrifying fluidized bed bioreactors (DFBBRs)[J]. Journal of Biotechnology, 2014, 192: 281-290. |
27 | GongY, PengY, YangQ, et al. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate[J].Journal of Hazardous Materials, 2012, 227/228: 453-460. |
28 | 刘越, 李鹏章, 彭永臻. 短程硝化过程中硝化速率与N2O产生速率的关系[J]. 化工学报, 2015, 66(11): 4652-4660. |
LiuY, LiP Z, PengY Z. Relationship between N2O production rate and ammonia oxidation rate during nitritation process[J]. CIESC Journal, 2015, 66(11): 4652-4660. | |
29 | PengL, NiB J, ErlerD, et al. The effect of dissolved oxygen on N2O production by ammonia-oxidizing bacteria in an enriched nitrifying sludge[J]. Water Research, 2014, 66(1): 12-21. |
30 | HeQ, ZhuY, FanL, et al. Effects of C/N ratio on nitrous oxide production from nitrification in a laboratory scale biological aerated filter reactor[J]. Water Science & Technology, 2017, 75(5/6): 1270-1280. |
31 | 巩有奎, 任丽芳, 彭永臻. 不同DO下SBBR亚硝酸型同步脱氮及N2O释放特性[J]. 化工学报, 2019, 70(4): 1550-1558. |
GongY K, RenL F, PengY Z. Characteristics of simultaneous nitrification and denitrification via nitrite and N2O emission in SBBR under different DO concentrations[J]. CIESC Journal, 2019, 70(4): 1550-1558. | |
32 | HeQ, ZhangW, ZhangS. Enhanced nitrogen removal in an aerobic granular sequencing batch reactor performing simultaneous nitrification, endogenous denitrification and phosphorus removal with low superficial gas velocity[J]. Chemical Engineering Journal, 2017, 326(15): 1223-1231. |
33 | GuisasolaA, JubanyI, BaezaJ A, et al. Respirometric estimation of the oxygen affinity constants for biological ammonia and nitrite oxidation[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(4): 388-396. |
34 | SolimanM, EldyastiA. Ammonia-oxidizing bacteria(AOB): opportunities and applications—a review[J]. Reviews in Environmental Science and Bio/Technology, 2018, 17(2): 285-321. |
35 | MaW, HanY, MaW, et al. Enhanced nitrogen removal from coal gasification wastewater by simultaneous nitrification and denitrification (SND) in an oxygen-limited aeration sequencing batch biofilm reactor[J]. Bioresource Technology, 2017, 44(11): 84-91. |
36 | SabbaF, PicioreanuC, PerezJ, et al. Hydroxylamine diffusion can enhance N2O emissions in nitrifying biofilms: a modeling study[J]. Environmental Science &Technology, 2015, 49(3): 1486-1494. |
37 | LiuY, TayJ H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research, 2002, 36: 1653-1665. |
38 | FletcherM, FloodgateG D. An electron-microscopic demonstration of an acid polysaccharide involved in the adhesion of a marine bacterium on solid surface[J]. J. Gen. Microbiol., 1973, 74: 325-334. |
39 | TsunedaS, ParkS, HayashiH, et al. Enhancement of nitrifying biofilm formation using selected EPS produced by heterotrophic bacteria[J]. Water Science & Technology, 2001, 43(6): 197-204. |
[1] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[2] | 徐振和, 李泓江, 高雨, 礼峥, 张含烟, 徐宝彤, 丁茯, 孙亚光. In2O3/Ag:ZnIn2S4“Type Ⅱ”型异质结构材料的制备及可见光催化性能[J]. 化工学报, 2022, 73(8): 3625-3635. |
[3] | 巩有奎, 罗佩云, 孙洪伟. 厌氧-限氧SBR处理低C/N生活污水SNDPR启动及N2O释放[J]. 化工学报, 2021, 72(8): 4381-4390. |
[4] | 徐宇峰, 郭鸣, 王让, 肖伟, 刘元慧, 李思敏. 复合改性生物砂滤池对突发PhACs痕量污染的去除效果分析[J]. 化工学报, 2020, 71(7): 3322-3332. |
[5] | 黄珊, 陆勇泽, 朱光灿, 孔赟. 耦合生物阴极SND的MLMB -MFC的构建与运行[J]. 化工学报, 2020, 71(4): 1772-1780. |
[6] | 巩有奎, 彭永臻. 运行方式对SBBR亚硝酸型同步脱氮及N2O释放的影响[J]. 化工学报, 2019, 70(6): 2289-2297. |
[7] | 巩有奎, 任丽芳, 彭永臻. 不同DO下SBBR亚硝酸型同步脱氮及N2O释放特性[J]. 化工学报, 2019, 70(4): 1550-1558. |
[8] | 巩有奎, 赵强, 彭永臻. 不同C/N下SBBR脱氮过程N2O释放及胞外多聚物变化[J]. 化工学报, 2019, 70(12): 4847-4855. |
[9] | 韩怀志, 陈鑫, 胡怡然, 王坤芳, 崔运磊, 于瑞天. 内插松弛扭带波节管的流动与传热特性的数值模拟[J]. 化工学报, 2018, 69(4): 1374-1384. |
[10] | 仇媛, 王长真, 李海涛, 胡晓波, 王永钊, 赵永祥. 单分散Co3O4@SiO2核壳催化剂的制备及N2O催化分解性能[J]. 化工学报, 2018, 69(4): 1493-1499. |
[11] | 高梦佳, 王淑莹, 王衫允, 彭永臻. 生活污水对成熟厌氧氨氧化颗粒污泥的影响[J]. 化工学报, 2017, 68(5): 2066-2073. |
[12] | 余岳溪, 高正阳, 季鹏, 李方勇, 杨维结. 煤焦异相还原N2O的反应机理[J]. 化工学报, 2017, 68(1): 369-374. |
[13] | 韩怀志, 宋福元, 张国磊, 杨龙滨, 李彦军. 外凸式波节管结合内插扭带复合强化换热性能分析[J]. 化工学报, 2016, 67(S1): 195-202. |
[14] | 崔有为, 林小媛, 冀思远, 施云鹏. SRT对富集高聚PHA能力嗜盐MMC的影响[J]. 化工学报, 2016, 67(6): 2575-2582. |
[15] | 张建华, 彭永臻, 张淼, 孙雅雯, 王淑莹, 王聪. 同步硝化反硝化SBBR处理低C/N比生活污水的启动与稳定运行[J]. 化工学报, 2016, 67(11): 4817-4824. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 322
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||