1 |
Su T M, Shao Q, Qin Z Z, et al. Role of interfaces in two-dimensional photocatalyst for water splitting[J]. ACS Catalysis, 2018, 8(3): 2253-2276.
|
2 |
Zhang R L, Xie J W, Wang C, et al. Macroporous ZnO/ZnS/CdS composite spheres as efficient and stable photocatalysts for solar-driven hydrogen generation[J]. Journal of Materials Science, 2017, 52(19): 11124-11134.
|
3 |
Gao Y, Shi C, Feng J Z, et al. Synergistic effect of upconversion and plasmons in NaYF4: Yb3+, Er3+, Tm3+@TiO2–Ag composites for MO photodegradation[J]. RSC Advances, 2017, 7(86): 54555-54561.
|
4 |
王昱涵, 白思雨, 崔丽杰, 等. Ni-Mo双金属催化剂的甲烷化性能与耐硫稳定性[J]. 化工学报, 2018, 69(5): 2063-2072.
|
|
Wang Y H, Bai S Y, Cui L J, et al. Catalytic activity and sulfur-resistance stability of Ni-Mo-based catalysts for syngas methanation[J]. CIESC Journal, 2018, 69(5): 2063-2072.
|
5 |
Mao Z Y, Chen J J, Yang Y F, et al. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution[J]. ACS Applied Materials & Interfaces, 2017, 9(14): 12427-12435.
|
6 |
Yuan Y J, Li Z J, Wu S T, et al. Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D-2D MoS2/CdS photocatalysts for H2 production[J]. Chemical Engineering Journal, 2018, 350: 335-343.
|
7 |
张霄玲, 鲍佳宁, 李运甲, 等. 工业MnO x 颗粒催化剂的制备及其低温脱硝应用研究[J]. 化工学报, 2020, 71(11): 5169-5177.
|
|
Zhang X L, Bao J N, Li Y J, et al. Preparation and industrial application of MnO x particle catalyst for low temperature denitration[J]. CIESC Journal, 2020, 71(11): 5169-5177.
|
8 |
Xu Z H, Xu B T, Qian K, et al. In situ growth of CuS nanoparticles on g-C3N4 nanosheets for H2 production and the degradation of organic pollutant under visible-light irradiation[J]. RSC Advances, 2019, 9(44): 25638-25646.
|
9 |
Jiang L B, Yuan X Z, Pan Y, et al. Doping of graphitic carbon nitride for photocatalysis: a reveiw[J]. Applied Catalysis B: Environmental, 2017, 217: 388-406.
|
10 |
Cao M J, Wang F, Zhu J F, et al. Shape-controlled synthesis of flower-like ZnO microstructures and their enhanced photocatalytic properties[J]. Materials Letters, 2017, 192: 1-4.
|
11 |
Gao Y, Lin J Y, Zhang Q Z, et al. Facile synthesis of heterostructured YVO4/g-C3N4/Ag photocatalysts with enhanced visible-light photocatalytic performance[J]. Applied Catalysis B: Environmental, 2018, 224: 586-593.
|
12 |
Priya B S, Shanthi M, Manoharan C, et al. Hydrothermal synthesis of Ga-doped In2O3 nanostructure and its structural, optical and photocatalytic properties[J]. Materials Science in Semiconductor Processing, 2017, 71: 357-365.
|
13 |
Wang Y Y, Xue S L, Xie P, et al. Preparation, characterization and photocatalytic activity of juglans-like indium oxide (In2O3) nanospheres[J]. Materials Letters, 2017, 192: 76-79.
|
14 |
Lin L H, Ou H H, Zhang Y F, et al. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis[J]. ACS Catalysis, 2016, 6(6): 3921-3931.
|
15 |
Ma Y, Wang X L, Jia Y S, et al. Titanium dioxide-based nanomaterials for photocatalytic fuel generations[J]. Chemical Reviews, 2014, 114(19): 9987-10043.
|
16 |
Wang M Y, Huang S S, Pang X, et al. Switching charge kinetics from type-I to Z-scheme for g-C3N4 and ZnIn2S4 by defective engineering for efficient and durable hydrogen evolution[J]. Sustainable Energy & Fuels, 2019, 3(12): 3422-3429.
|
17 |
Zeng D Q, Xiao L, Ong W J, et al. Hierarchical ZnIn2S4/MoSe2 nanoarchitectures for efficient noble-metal-free photocatalytic hydrogen evolution under visible light[J]. ChemSusChem, 2017, 10(22): 4624-4631.
|
18 |
Chai B, Liu C, Wang C L, et al. Photocatalytic hydrogen evolution activity over MoS2/ZnIn2S4 microspheres[J]. Chinese Journal of Catalysis, 2017, 38(12): 2067-2075.
|
19 |
Li Z J, Wang X H, Tian W L, et al. CoNi bimetal cocatalyst modifying a hierarchical ZnIn2S4 nanosheet-based microsphere noble-metal-free photocatalyst for efficient visible-light-driven photocatalytic hydrogen production[J]. ACS Sustainable Chemistry & Engineering, 2019(16): 20190-20201.
|
20 |
Shen S H, Zhao L, Zhou Z H, et al. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation[J]. The Journal of Physical Chemistry C, 2008, 112(41): 16148-16155.
|
21 |
Qiu P X, Yao J H, Chen H, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst[J]. Journal of Hazardous Materials, 2016, 317: 158-168.
|
22 |
孙亚光, 张含烟, 明涛, 等. ZnIn2S4/g-C3N4复合材料的制备及可见光催化制氢性能[J]. 高等学校化学学报, 2021, 42(10): 3160-3166.
|
|
Sun Y G, Zhang H Y, Ming T, et al. Synthesis of ZnIn2S4/g-C3N4 nanocomposites with efficient photocatalytic H2 generation activity by a simple hydrothermal method[J]. Chemical Journal of Chinese Universities, 2021, 42(10): 3160-3166.
|
23 |
Ding F, Ming T, Zhang H Y, et al. Plasmonic Ag nanoparticles decorated g-C3N4 for enhanced visible-light driven photocatalytic degradation and H2 production[J]. Resources Chemicals and Materials, 2022, 1(1): 1-7.
|
24 |
Gao Y, Xu B T, Cherif M, et al. Atomic insights for Ag interstitial/substitutional doping into ZnIn2S4 nanoplates and intimate coupling with reduced graphene oxide for enhanced photocatalytic hydrogen production by water splitting[J]. Applied Catalysis B: Environmental, 2020, 279: 119403.
|
25 |
高雨, 张含烟, 林俊英, 等. CdS/RGO/MoS2复合材料的制备及光催化性能[J]. 精细化工, 2022, 39(4): 734-740.
|
|
Gao Y, Zhang H Y, Lin J Y, et al. Preparation of CdS/RGO/MoS2 composite and its photocatalytic performance[J]. Fine Chemicals, 2022, 39(4): 734-740.
|
26 |
Wang S B, Guan B Y, Lou X W. Construction of ZnIn2S4-In2O3 hierarchical tubular heterostructures for efficient CO2 photoreduction[J]. Journal of the American Chemical Society, 2018, 140(15): 5037-5040.
|
27 |
Gao Y, Qian K, Xu B T, et al. Designing 2D-2D g-C3N4/Ag:ZnIn2S4 nanocomposites for the high-performance conversion of sunlight energy into hydrogen fuel and the meaningful reduction of pollution[J]. RSC Advances, 2020, 10(54): 32652-32661.
|
28 |
Ren J T, Yuan K, Wu K, et al. A robust CdS/In2O3 hierarchical heterostructure derived from a metal-organic framework for efficient visible-light photocatalytic hydrogen production[J]. Inorganic Chemistry Frontiers, 2019, 6(2): 366-375.
|
29 |
姬磊, 于瑞敏, 王浩人, 等. BiOCl/NaBiO3复合材料的原位合成及光催化性能[J]. 高等学校化学学报, 2015, 36(3): 551-558.
|
|
Ji L, Yu R M, Wang H R, et al. In-situ synthesis of BiOCl/NaBiO3 composites and their photocatalytic activities[J]. Chemical Journal of Chinese Universities, 2015, 36(3): 551-558.
|
30 |
Xu Z H, Kibria M G, Al Otaibi B, et al. Towards enhancing photocatalytic hydrogen generation: which is more important, alloy synergistic effect or plasmonic effect?[J]. Applied Catalysis B: Environmental, 2018, 221: 77-85.
|
31 |
Xu Z H, Quintanilla M, Vetrone F, et al. Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in core@shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au[J]. Advanced Functional Materials, 2015, 25(20): 2950-2960.
|
32 |
Sharma M D, Mahala C, Basu M. Photoelectrochemical water splitting by In2S3/In2O3 composite nanopyramids[J]. ACS Applied Nano Materials, 2020, 3(11): 11638-11649.
|
33 |
Ye L Q, Liu J Y, Jiang Z, et al. Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013, 142/143: 1-7.
|
34 |
Li T T, Zhao L H, He Y M, et al. Synthesis of g-C3N4/SmVO4 composite photocatalyst with improved visible light photocatalytic activities in RhB degradation[J]. Applied Catalysis B: Environmental, 2013, 129: 255-263.
|
35 |
雷珊, 杨娟, 余剑, 等. 含钛高炉渣制备SCR烟气脱硝催化剂[J]. 化工学报, 2014, 65(4): 1251-1259.
|
|
Lei S, Yang J, Yu J, et al. SCR denitration catalyst prepared from titanium-bearing blast furnace slag[J]. CIESC Journal, 2014, 65(4): 1251-1259.
|