化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3322-3332.DOI: 10.11949/0438-1157.20191259
徐宇峰1,2(),郭鸣1,王让3,肖伟4,刘元慧1,李思敏1()
收稿日期:
2019-10-23
修回日期:
2020-03-03
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
李思敏
作者简介:
徐宇峰(1984—),男,博士,副教授,基金资助:
Yufeng XU1,2(),Ming GUO1,Rang WANG3,Wei XIAO4,Yuanhui LIU1,Simin LI1()
Received:
2019-10-23
Revised:
2020-03-03
Online:
2020-07-05
Published:
2020-07-05
Contact:
Simin LI
摘要:
针对石英砂(OQS)表面特征及特性,进行表面形貌重构改性及表面涂覆改性,并根据涂覆改性差异,制备出亲水改性砂(IMS)、疏水改性砂(OMS)、阳离子改性砂(CMS)和氨基改性砂(AMS)。以实验室模拟二级处理出水为研究对象,考察以6种石英砂[4种复合改性砂、表面重构砂(对照1)及原始砂(对照2)]为核心的生物砂滤工艺对碳氮磷及突发药物活性物质(PhACs)的削减效果,分析了各组生物砂滤池微生物种群结构,并进行了生态风险评估。结果表明,各类工艺对常规污染物的去除率在24.22%~90.35%之间,CM-BSF对常规污染物的去除效果最好;6种生物砂滤工艺对5大类12种PhACs的去除率在7.9%~50.3%之间,改性砂滤工艺CM-BSF去除效果更好;高通量检测表明各组微生物物种高度相似,但丰度有差异,总体来说,具备PhACs降解能力的功能菌在复合改性石英砂覆膜生物样品中的丰度较高;通过生态风险评价方法分析,CM-BSF工艺出水产生生态风险最小。
中图分类号:
徐宇峰, 郭鸣, 王让, 肖伟, 刘元慧, 李思敏. 复合改性生物砂滤池对突发PhACs痕量污染的去除效果分析[J]. 化工学报, 2020, 71(7): 3322-3332.
Yufeng XU, Ming GUO, Rang WANG, Wei XIAO, Yuanhui LIU, Simin LI. Analysis on removal effect of micro-contamination of PhACs by composite modified bio-sand filter[J]. CIESC Journal, 2020, 71(7): 3322-3332.
项目 | pH | 温度/℃ | 浊度/NTU | NH3-N/(mg/L) | TN/ (mg/L) | TP/ (mg/L) | CODCr/(mg/L) |
---|---|---|---|---|---|---|---|
Min | 7.18 | 19.50 | 2.19 | 1.09 | 15.68 | 0.96 | 25.40 |
Max | 7.78 | 21.80 | 3.63 | 3.90 | 20.01 | 1.21 | 30.51 |
Ave | 7.48 | 20.65 | 2.91 | 2.50 | 17.85 | 1.09 | 27.95 |
表1 配水水质情况
Table 1 Quality of effluent
项目 | pH | 温度/℃ | 浊度/NTU | NH3-N/(mg/L) | TN/ (mg/L) | TP/ (mg/L) | CODCr/(mg/L) |
---|---|---|---|---|---|---|---|
Min | 7.18 | 19.50 | 2.19 | 1.09 | 15.68 | 0.96 | 25.40 |
Max | 7.78 | 21.80 | 3.63 | 3.90 | 20.01 | 1.21 | 30.51 |
Ave | 7.48 | 20.65 | 2.91 | 2.50 | 17.85 | 1.09 | 27.95 |
药物门类 | 英文名称 | 药物名称 | 药物门类 | 英文名称 | 药物名称 |
---|---|---|---|---|---|
大环内酯类抗生素(macrolide antibiotics) | Azithromycin (AZM) | 阿奇霉素 | 喹诺酮类抗生素(quinolones) | Ofloxacin (OFX) | 氧氟沙星 |
Romycin-H2O (ERY-H2O) | 红霉素 | Norfloxacin (NOR) | 诺氟沙星 | ||
RTMithromycin (RTM) | 罗红霉素 | Enoxacin (ENO) | 依诺沙星 | ||
止痛剂类药(analgesic) | Ibuprofen (IBU) | 布洛芬 | 降高血压类药(antihypersensitive) | Metoprolol (MTP) | 美托洛尔 |
Diclofenac (DCF) | 双氯芬 酸钠 | Amlodipine (ALP) | 阿莫洛地平 | ||
Acetaminophen (APAP) | 对乙酰氨基酚 | 四环素类抗生素(tetracyclines) | Tetracycline (TCN) | 四环素 |
表2 目标药物
Table 2 Target PhACs
药物门类 | 英文名称 | 药物名称 | 药物门类 | 英文名称 | 药物名称 |
---|---|---|---|---|---|
大环内酯类抗生素(macrolide antibiotics) | Azithromycin (AZM) | 阿奇霉素 | 喹诺酮类抗生素(quinolones) | Ofloxacin (OFX) | 氧氟沙星 |
Romycin-H2O (ERY-H2O) | 红霉素 | Norfloxacin (NOR) | 诺氟沙星 | ||
RTMithromycin (RTM) | 罗红霉素 | Enoxacin (ENO) | 依诺沙星 | ||
止痛剂类药(analgesic) | Ibuprofen (IBU) | 布洛芬 | 降高血压类药(antihypersensitive) | Metoprolol (MTP) | 美托洛尔 |
Diclofenac (DCF) | 双氯芬 酸钠 | Amlodipine (ALP) | 阿莫洛地平 | ||
Acetaminophen (APAP) | 对乙酰氨基酚 | 四环素类抗生素(tetracyclines) | Tetracycline (TCN) | 四环素 |
药品 | PNEC | 进水 | OQ-BSF 出水RQ | SM-BSF 出水RQ | IM-BSF 出水RQ | OM-BSF 出水RQ | CM-BSF 出水RQ | AM-BSF 出水RQ |
---|---|---|---|---|---|---|---|---|
AZM | 1.97 | 0.37 | 0.28 | 0.24 | 0.25 | 0.18 | 0.2 | 0.23 |
ERY-H2O | 0.02 | 30.75 | 21.55 | 17.6 | 21.8 | 15.95 | 17.05 | 18.8 |
RTM | 4 | 0.19 | 0.15 | 0.14 | 0.14 | 0.12 | 0.11 | 0.11 |
OFX | 0.02 | 91.13 | 63.31 | 46 | 61.38 | 44.56 | 40.56 | 51.63 |
NOR | 2 | 0.44 | 0.4 | 0.38 | 0.41 | 0.35 | 0.36 | 0.39 |
ENO | 0.03 | 25.49 | 18.4 | 16.81 | 17.22 | 15.49 | 14.72 | 15.83 |
IBU | 1 | 0.92 | 0.69 | 0.56 | 0.67 | 0.62 | 0.57 | 0.6 |
DCF | 1 | 0.9 | 0.75 | 0.6 | 0.72 | 0.47 | 0.66 | 0.7 |
APAP | 9.2 | 0.15 | 0.11 | 0.09 | 0.08 | 0.11 | 0.09 | 0.09 |
MTP | 7.9 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
ALP | 126.87 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 |
TCN | 0.09 | 12.42 | 2.93 | 2.8 | 2.9 | 2.58 | 2.58 | 2.8 |
RQt | 162.81 | 108.62 | 85.26 | 105.6 | 80.45 | 76.92 | 91.23 |
表3 进出水中目标PhACs的风险熵值
Table 3 Risk entropy of target PhACs in influent and effluent
药品 | PNEC | 进水 | OQ-BSF 出水RQ | SM-BSF 出水RQ | IM-BSF 出水RQ | OM-BSF 出水RQ | CM-BSF 出水RQ | AM-BSF 出水RQ |
---|---|---|---|---|---|---|---|---|
AZM | 1.97 | 0.37 | 0.28 | 0.24 | 0.25 | 0.18 | 0.2 | 0.23 |
ERY-H2O | 0.02 | 30.75 | 21.55 | 17.6 | 21.8 | 15.95 | 17.05 | 18.8 |
RTM | 4 | 0.19 | 0.15 | 0.14 | 0.14 | 0.12 | 0.11 | 0.11 |
OFX | 0.02 | 91.13 | 63.31 | 46 | 61.38 | 44.56 | 40.56 | 51.63 |
NOR | 2 | 0.44 | 0.4 | 0.38 | 0.41 | 0.35 | 0.36 | 0.39 |
ENO | 0.03 | 25.49 | 18.4 | 16.81 | 17.22 | 15.49 | 14.72 | 15.83 |
IBU | 1 | 0.92 | 0.69 | 0.56 | 0.67 | 0.62 | 0.57 | 0.6 |
DCF | 1 | 0.9 | 0.75 | 0.6 | 0.72 | 0.47 | 0.66 | 0.7 |
APAP | 9.2 | 0.15 | 0.11 | 0.09 | 0.08 | 0.11 | 0.09 | 0.09 |
MTP | 7.9 | 0.04 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
ALP | 126.87 | 0.01 | 0 | 0 | 0 | 0 | 0 | 0 |
TCN | 0.09 | 12.42 | 2.93 | 2.8 | 2.9 | 2.58 | 2.58 | 2.8 |
RQt | 162.81 | 108.62 | 85.26 | 105.6 | 80.45 | 76.92 | 91.23 |
1 | Ciesielczyk F, Goscianska J, Zdarta J, et al. The development of zirconia/silica hybrids for the adsorption and controlled release of active pharmaceutical ingredients[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2018, 545: 39-50. |
2 | Wang Y, Yang Q, Dong J. Competitive adsorption of PPCP and humic substances by carbon nanotube membranes. Effects of coagulation and PPCP properties[J]. Science of the Total Environment, 2017, 619/620: 352-359. |
3 | Li B, Zhang T, Xua Z Y, et al. Rapid analysis of 21 antibiotics of multiple classes in municipal waste water using ultra performance liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2009, 645: 64-72. |
4 | Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. The occurrence of pharmaceuticals, personal care produces, endocine disruptors and illicit drugs in surface water in South Wales, UK[J]. Water Research, 2008, 42: 3498-3518. |
5 | 李思敏. 污水厂二级出水深度处理O3+MBSF工艺及微生物群落结构特性研究[D]. 太原: 太原理工大学, 2016. |
Li S M. Study on O3 + MBSF process and microbial community structure characteristics of secondary treatment of secondary effluent from wastewater treatment plant [D]. Taiyuan: Taiyuan University of Technology, 2016. | |
6 | 尹然. 改性生物砂滤工艺对城市污水厂尾水中典型PhACs的去除机理研究[D]. 邯郸: 河北工程大学, 2017. |
Yin R. Removal mechanism of typical PhACs in tail water of municipal wastewater treatment plant by modified biological sand filtration process [D]. Handan: Hebei University of Engineering, 2017. | |
7 | 张佳. 微氟玻璃蚀刻技术的开发及应用[D]. 西安: 陕西科技大学, 2014. |
Zhang J. Development and application of microfluorine glass etching technology [D]. Xi an: Shaanxi University of Science and Technology, 2014. | |
8 | 刘存海, 张佳. 微氟循环玻璃蚀刻的工艺研究[J]. 陕西师范大学学报(自然科学版). 2014, (1): 62-64. |
Liu C H, Zhang J. Study on micro fluorine recycling etched glass[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2014, (1): 62-64. | |
9 | Abromaitis V, Racys V, van der Marel P, et al. Biodegradation of persistent organics can overcome adsorption-desorption hysteresis in biological activated carbon systems[J]. Chemosphere, 2016, 149: 183-189. |
10 | 李思敏, 高沛, 吕永康. 改性石英砂生物滤池深度处理污水厂二级出水[J]. 中国给水排水, 2015, 31(9): 104-108. |
Li S M, Gao P, Lyu Y K. Modified bio-sand filters for advanced treatment of secondary effluent of WWTP[J]. China Water & Wastewater, 2015, 31(9): 104-108. | |
11 | 翟小敏, 高旭, 张曼曼, 等. A+OSA污泥减量工艺碳元素平衡与减量机制研究[J]. 环境科学, 2012, 33(7): 2444-2450. |
Zhai X M, Gao X, Zhang M M, et al. Analysis of carbon balance and study on mechanism in anoxic-oxic-settling-anaerobic sludge reduction process[J]. Chinese Journal of Environmental Science, 2012, 33(7): 2444-2450. | |
12 | 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法 [M]. 4版. 北京: 中国环境出版社, 2002. |
Editorial Board of the State Environmental Protection Administration “Analysis Method of Water and Wastewater Monitoring”. Analysis Method of Water and Wastewater Monitoring [M]. 4th ed. Beijing: China Environment Press, 2002. | |
13 | Hernando M D, Agüera A, Fernández-Alba A R. LC-MS analysis and environmental risk of lipid regulators[J]. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1269-1285. |
14 | Zhang P, Qu Y, Feng Y, et al. The influence of the filtration membrane air-cathode biofilm on wastewater treatment[J]. Bioresource Technology, 2018, 256: 17-21. |
15 | 徐宇峰, 郭鸣, 王龙, 等. CODCr测量方法优化及其受营养盐胁迫研究[J]. 分析试验室, 2020, (3): 272-277. |
Xu Y F, Guo M, Wang L, et al. Optimization of CODCr measurement method and its nutritional stress [J]. Chinese Journal of Analysis Laboratory, 2020, (3): 272-277. | |
16 | 赵伟荣. 阳离子红X-GRL染料的UV、O3、O3/UV氧化处理研究[D]. 杭州: 浙江大学, 2004. |
Zhao W R. UV, O3, O3 / UV oxidation treatment of cationic red X-GRL dye [D]. Hangzhou: Zhejiang University, 2004. | |
17 | 王程, 马定莹, 陈忆东, 等. 氨基功能化沸石的制备及其吸附性研究[J]. 应用基础与工程科学学报, 2017, 25(6): 1077-1085. |
Wang C, Ma D Y, Chen Y D, et al. Preparation and adsorption property of amino functionalized zeolite[J]. Journal of Basic Science and Engineering, 2017, 25(6): 1077-1085. | |
18 | Wu J, He J D, Bi D S, et al. A bio-cake model for the soluble COD removal by the back-transport, adsorption and biodegradation processes in the submerged membrane bioreactor[J]. Desalination, 2013, 322(322): 1-12. |
19 | Berkessa Y W, Yan B H, Li T F, et al. Novel anaerobic membrane bioreactor (AnMBR) design for wastewater treatment at long HRT and high solid concentration[J]. Bioresource Technology, 2018, 250: 281-289. |
20 | 李思敏, 吕永康, 杨晶, 等. O3+MBSF组合工艺深度处理污水厂二级出水[J]. 中国给水排水, 2016, 32(11): 95-99. |
Li S M, Lyu Y K, Yang J, et al. O3/modified bio-sand filter for advanced treatment of secondary effluent from WWTP[J]. China Water & Wastewater, 2016, 32(11): 95-99. | |
21 | 陈佼. 人工快渗系统PN-ANAMMOX耦合脱氮性能及机理研究[D]. 成都: 西南交通大学, 2018. |
Chen J. Study on PN-ANAMMOX coupled denitrification performance and mechanism of artificial rapid infiltration system [D]. Chengdu: Southwest Jiaotong University, 2018. | |
22 | 刘元慧. 复合改性生物砂滤工艺对典型PhACs的削减机理研究——以四环素为例[D]. 邯郸: 河北工程大学, 2019. |
Liu Y H. Research on reduction mechanism of typical PhACs by composite modified biological sand filtration process—taking tetracycline as an example [D]. Handan: Hebei Engineering University, 2019. | |
23 | 施翔, 张旺, 龚向东, 等. 阿奇霉素-聚环糊精超分子包合物的制备及表征[J]. 扬州大学学报(自然科学版), 2014, 17(3): 29-31+40. |
Shi X, Zhang W, Gong X D, et al. Preparation and characterization of inclusion complex of Azithromycin with β-cyclodextrin polymer[J]. Journal of Yangzhou University(Natural Science Edition), 2014, 17(3): 29-31+40. | |
24 | Davoodi S, Dahrazma B, Goudarzi N, et al. Adsorptive removal of azithromycin from aqueous solutions using raw and saponin-modified nano diatomite[J]. Water Science and Technology, 2019, 80(5): 939-949. |
25 | Han Y, Quan X, Chen S, et al. Electrochemically enhanced adsorption of aniline on activated carbon fibers[J]. Separation and Purification Technology, 2006, 50(3): 365-372. |
26 | 唐胜华. 14C-红霉素在植物-土壤/水系统中的迁移转化和归趋[D]. 杭州: 浙江大学, 2017. |
Tang S H. Transfer and fate of 14C-erythromycin in plant-soil / water system [D]. Hangzhou: Zhejiang University, 2017. | |
27 | 于慧娟, 蔡友琼, 顾润润. 高效液相色谱法测定红霉素, 甲红霉素和罗红霉素的研究[J]. 分析试验室, 2006, 25(6): 63-66. |
Yu H J, Cai Y Q, Gu R R. Analysis of erythromycin, clarithromycin and roxithromycin by high performance liquid chromatography with fluorometric detection[J]. Chinese Journal of Analysis Laboratory, 2006, 25(6): 63-66. | |
28 | Tai Y, Tam N F Y, Wang R, et al. Iron plaque formation on wetland-plant roots accelerates removal of water-borne antibiotics[J]. Plant and Soil, 2018, 433(1/2): 323-338. |
29 | Soulé M E Z, Barraqué F, Flores F M, et al. Carbon/montmorillonite hybrids with different activation methods: adsorption of norfloxacin[J]. Adsorption, 2019, 25(7): 1361-1373. |
30 | Pei Z, Kong J, Shan X, et al. Sorption of aromatic hydrocarbons onto montmorillonite as affected by norfloxacin[J]. Journal of Hazardous Materials, 2012, 203: 137-144. |
31 | Martinez-Alcala I, Guillén-Navarro J M, Fernandez-Lopez C. Pharmaceutical biological degradation, sorption and mass balance determination in a conventional activated-sludge wastewater treatment plant from Murcia, Spain[J]. Chemical Engineering Journal, 2017, 316: 332-340. |
32 | Sturini M, Speltini A, Maraschi F, et al. Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight[J]. Applied Catalysis B: Environmental, 2012, 119: 32-39. |
33 | Xie H J, Liu W F, Zhang J, et al. Sorption of norfloxacin from aqueous solutions by activated carbon developed from Trapa natans husk[J]. Science China Chemistry, 2011, 54(5): 835-843. |
34 | Wang C, Ma L, Liu B, et al. Co-contaminant effects on ofloxacin adsorption onto activated carbon, graphite, and humic acid[J]. Environmental Science and Pollution Research, 2017, 24(30): 23834-23842. |
35 | 易琼, 祁智, 蔡莉, 等. 反相高效液相色谱法测定依诺沙星原料含量与有关物质[J]. 医药导报, 2007, 26(11): 1354-1355. |
Yi Q, Qi Z, Cai L, et al. Determination of the content and related substances of enoxacin by reversed-phase high performance liquid chromatography [J]. Medical Herald, 2007, 26 (11): 1354-1355. | |
36 | de Oliveira T, Guégan R, Thiebault T, et al. Adsorption of diclofenac onto organoclays: effects of surfactant and environmental (pH and temperature) conditions[J]. Journal of Hazardous Materials, 2017, 323: 558-566. |
37 | Xu H, Wang W, Shi Y, et al. Characterization of the partition rate of ibuprofen across the water-octanol interface and the influence of common pharmaceutical excipients[J]. Journal of Pharmaceutical Sciences, 2019, 108(1): 525-537. |
38 | Martín J, del Mar Orta M, Medina-Carrasco S, et al. Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media[J]. Applied Clay Science, 2019, 171: 29-37. |
39 | Villaescusa I, Fiol N, Poch J, et al. Mechanism of paracetamol removal by vegetable wastes: the contribution of π-π interactions, hydrogen bonding and hydrophobic effect[J]. Desalination, 2011, 270(1/2/3): 135-142. |
40 | Liu H, Ning W, Cheng P, et al. Evaluation of animal hairs-based activated carbon for sorption of norfloxacin and acetaminophen by comparing with cattail fiber-based activated carbon[J]. Journal of Analytical and Applied Pyrolysis, 2013, 101: 156-165. |
41 | Lladó J, Lao-Luque C, Ruiz B, et al. Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics[J]. Process Safety and Environmental Protection, 2015, 95: 51-59. |
42 | Ali I, Asim M, Khan T A. Low cost adsorbents for the removal of organic pollutants from wastewater[J]. Journal of Environmental Management, 2012, 113: 170-183. |
43 | Quesada H B, Cusioli L F, de Oliveira B C, et al. Acetaminophen adsorption using a low-cost adsorbent prepared from modified residues of Moringa oleifera Lam. seed husks[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(10): 3147-3157. |
44 | Maurer M, Escher B I, Richle P, et al. Elimination of β-blockers in sewage treatment plants[J]. Water Research, 2007, 41(7): 1614-1622. |
45 | Kibbey T C G, Paruchuri R, Sabatini D A, et al. Adsorption of beta blockers to environmental surfaces[J]. Environmental Science & Technology, 2007, 41(15): 5349-5356. |
46 | 单振华, 严静娜, 杨腾飞, 等. 美托洛尔在沉积物与活性污泥上的吸附行为[J]. 环境化学, 2016, 35(12): 2559-2567. |
Shan Z H, Yan J N, Yang T F, et al. Adsorption behaviors of Metoprolol onto sediments and activated sludge [J]. Environmental Chemistry, 2016, 35(12): 2559-2567. | |
47 | Amiri M, Imanzade H. Adsorption of amlodipine at the surface of tosyl-carbon nanoparticles for electrochemical sensing[J]. Iranian Journal of Pharmaceutical Research: IJPR, 2016, 15(3): 303-311. |
48 | Chen Y, Wang F, Duan L, et al. Tetracycline adsorption onto rice husk ash, an agricultural waste: its kinetic and thermodynamic studies[J]. Journal of Molecular Liquids, 2016, 222: 487-494. |
49 | Yu J, Xiong W, Li X, et al. Functionalized MIL-53 (Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution[J]. Microporous and Mesoporous Materials, 2019, 290: 109642. |
50 | Wang Z, Tang H, Li W, et al. Core–shell TiO2@ C ultralong nanotubes with enhanced adsorption of antibiotics[J]. Journal of Materials Chemistry A, 2019, 7(32): 19081-19086. |
51 | 张杏艳, 陈中华, 邓海明, 等. 水环境中四环素类抗生素降解及去除研究进展[J]. 生态毒理学报, 2016, 11(6): 44-52. |
Zhang X Y, Chen Z H, Deng H M, et al. A review on degradation and elimination of tetracycline antibiotics in water environment [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 44-52. | |
52 | Mccormick J R D, Fox S M, Smith L L, et al. On the nature of the reversible isomerizations occurring in the tetracycline family[J]. Journal of the American Chemical Society, 1956, 78(14): 3547-3548. |
53 | 刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3): 89-94. |
Liu W, Wang H, Chen X J, et al. Progress on degradation of antibiotics in environment [J]. Progress in Veterinary Medicine, 2009, 30 (3): 89-94. | |
54 | 刘元望, 李兆君, 冯瑶, 等. 微生物降解抗生素的研究进展[J]. 农业环境科学学报, 2016, (2): 212-224. |
Liu Y W, Li Z J, Feng Y, et al. Research progress in microbial degradation of antibiotics [J]. Journal of Agro-Environment Science, 2016, (2): 212-224. | |
55 | Backhaus T, Faust M. Predictive environmental risk assessment of chemical mixtures: a conceptual framework [J]. Environmental Science and Technology, 2012, 46(5): 2564-2573. |
[1] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[2] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
[3] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[4] | 刘庆超, 贾辉, 许逸飞, 路娜, 尹延梅, 王捷. 基于FBG力学传感的曝气生物滤池中剪切力分布研究[J]. 化工学报, 2023, 74(4): 1755-1763. |
[5] | 王悦琳, 晁伟, 蓝晓程, 莫志朋, 佟淑环, 王铁峰. 合成气生物发酵法制乙醇的研究进展[J]. 化工学报, 2022, 73(8): 3448-3460. |
[6] | 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707. |
[7] | 刘坐东, 王禹晨, 邢维维, 赵波, 徐志明. 复合改性表面抑制颗粒污垢积聚特性分析[J]. 化工学报, 2022, 73(11): 4928-4937. |
[8] | 高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214. |
[9] | 毛金竹, 肖淑玲, 杨智淳, 王孝宇, 张诗, 陈俊宏, 谢佶晟, 陈福德, 黄子诺, 冯天宇, 张瑷珲, 方柏山. 合成生物学在农残检测领域的应用[J]. 化工学报, 2021, 72(5): 2413-2425. |
[10] | 忻睦迪, 邢恩会. 三甲基膦和金属氧化物复合改性ZSM-5分子筛及其裂解性能研究[J]. 化工学报, 2021, 72(5): 2657-2668. |
[11] | 张肖静,马冰冰,张涵,位登辉,张红丽,胡浩,赵子睿. 厌氧氨氧化工艺处理不同抗生素废水的性能比较[J]. 化工学报, 2021, 72(11): 5810-5819. |
[12] | 徐静, 由紫暄, 张君奇, 陈正, 吴德光, 李锋, 宋浩. 合成生物学方法改造电活性生物膜研究进展[J]. 化工学报, 2020, 71(9): 3950-3962. |
[13] | 刘宗跃, 杨宏, 王少伦, 王佳伟. 硝化细菌工业化快速富集[J]. 化工学报, 2020, 71(8): 3722-3729. |
[14] | 胡智丰,邓时海,张超,李德生,彭帅. 集成式铁基质生物膜反应器自养反硝化深度脱氮[J]. 化工学报, 2020, 71(7): 3304-3312. |
[15] | 宋珣, 付乾, 李俊, 张亮, 廖强, 朱恂. 固碳产甲烷微生物阴极能质传输特性数值模拟[J]. 化工学报, 2020, 71(5): 2273-2282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||