化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4795-4803.DOI: 10.11949/0438-1157.20190663
收稿日期:
2019-06-13
修回日期:
2019-08-18
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
陈德珍
作者简介:
雷开元(1995—),男,硕士研究生,基金资助:
Received:
2019-06-13
Revised:
2019-08-18
Online:
2019-12-05
Published:
2019-12-05
Contact:
Dezhen CHEN
摘要:
热解炭原位重整城市固体废物的挥发分是改善热解产物的良好方法。在这个过程中,水蒸气在产品转化中起着重要作用。为了了解水分在重整过程中的作用,本研究中将热解液中的油相和水相分离,然后用D2O代替重整过程中的水相,以跟踪液体、气体和固体之间的氢转移。热解油/焦炭重整过程在600、700和800℃下进行。用GC-MS(气相色谱质谱法)分析重整后液体中的油相;IR-MS(同位素比质谱法)分析重整后液体和固体中的氘浓度。研究发现,在实验温度范围内,水蒸气对焦炭的气化作用非常弱,当D2O/焦炭的比例为2/1时,D2O中2%(质量)的氘在反应后残留在炭中;但水蒸气与热解油的气化反应很强烈,在800℃时,78.68%(质量)的热解液(水油混合物)被气化,且热解油中脂肪烃被大量分解,重整液的油相组分中芳香烃占到96.17%;同时,当D2O/油的比例为2/3时,D2O中59%的氘转移到合成气中。研究结果将为生活垃圾热解处理控制最终产物提供理论指导。
中图分类号:
雷开元, 陈德珍. 生活垃圾热解半焦-热解油重整过程中水分的消耗与转移[J]. 化工学报, 2019, 70(12): 4795-4803.
Kaiyuan LEI, Dezhen CHEN. Water consumption and transfer during MSW pyrolysis char-vaporized pyrolysis oil reforming process[J]. CIESC Journal, 2019, 70(12): 4795-4803.
Composition/%(mass) | Residue | HHV/(MJ/kg) | ||||
---|---|---|---|---|---|---|
Kitchen wastes | Paper | Cloth and fiber | Plastics | Wood | ||
14.23±0.88 | 6.32±0.27 | 27.54±1.14 | 22.44±0.98 | 3.42±0.41 | 26.05±1.03 | 15.77±0.21 |
表1 生活垃圾的组成(空气干燥基)
Table 1 Composition of MSW sample(air dry basis)
Composition/%(mass) | Residue | HHV/(MJ/kg) | ||||
---|---|---|---|---|---|---|
Kitchen wastes | Paper | Cloth and fiber | Plastics | Wood | ||
14.23±0.88 | 6.32±0.27 | 27.54±1.14 | 22.44±0.98 | 3.42±0.41 | 26.05±1.03 | 15.77±0.21 |
Char | Liquid | Gas |
---|---|---|
44.21±0.79 | 33.12±0.75 | 22.67±0.64 |
表2 550℃下垃圾热解的产物分布
Table 2 Product distribution of MSW pyrolysis at 550℃/%
Char | Liquid | Gas |
---|---|---|
44.21±0.79 | 33.12±0.75 | 22.67±0.64 |
Proximate analysis | Ultimate analysis | |||||
---|---|---|---|---|---|---|
A | V | FC | C | H | S | N |
41.74±1.01 | 11.05±0.77 | 47.21±1.23 | 41.39±1.12 | 1.19±0.12 | 0.71±0.09 | 1.07±0.11 |
表3 热解半焦的工业分析及元素分析(干燥基)
Table 3 Proximate analysis and ultimate analysis of pyrolysis char(dry basis)/%(mass)
Proximate analysis | Ultimate analysis | |||||
---|---|---|---|---|---|---|
A | V | FC | C | H | S | N |
41.74±1.01 | 11.05±0.77 | 47.21±1.23 | 41.39±1.12 | 1.19±0.12 | 0.71±0.09 | 1.07±0.11 |
CaO | SiO2 | Fe2O3 | K2O | Al2O3 | P2O5 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|
26.80 | 14.70 | 10.10 | 4.49 | 3.92 | 3.77 | 1.78 | 1.47 | 0.77 |
表4 热解半焦的灰成分分析(干燥基)
Table 4 Ash composition analysis of pyrolysis char(dry basis)/%(mass)
CaO | SiO2 | Fe2O3 | K2O | Al2O3 | P2O5 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|
26.80 | 14.70 | 10.10 | 4.49 | 3.92 | 3.77 | 1.78 | 1.47 | 0.77 |
Experiment scenario | Reactant | Temperature/℃ | Liquid product | Gas product | Residue char |
---|---|---|---|---|---|
1 | water | 600 | RL1 | RG1 | RC1 |
2 | water | 700 | RL2 | RG2 | RC2 |
3 | water | 800 | RL3 | RG3 | RC3 |
4 | water +oil | 600 | RL4 | RG4 | RC4 |
5 | water +oil | 700 | RL5 | RG5 | RC5 |
6 | water +oil | 800 | RL6 | RG6 | RC6 |
7 | water +oil | 800 | RL7 | RG7 | — |
表5 热解炭催化重整焦油实验工况设置
Table 5 Experimental design for oil reforming with pyrolysis char
Experiment scenario | Reactant | Temperature/℃ | Liquid product | Gas product | Residue char |
---|---|---|---|---|---|
1 | water | 600 | RL1 | RG1 | RC1 |
2 | water | 700 | RL2 | RG2 | RC2 |
3 | water | 800 | RL3 | RG3 | RC3 |
4 | water +oil | 600 | RL4 | RG4 | RC4 |
5 | water +oil | 700 | RL5 | RG5 | RC5 |
6 | water +oil | 800 | RL6 | RG6 | RC6 |
7 | water +oil | 800 | RL7 | RG7 | — |
Experiment scenario | Water/%(mass) | Oil/%(mass) | 液体反应率η/% | |
---|---|---|---|---|
1 | liquid | 100.00 | 0 | 3.21 |
RL1 | 93.40 | 6.60 | ||
2 | liquid | 100.00 | 0 | 6.70 |
RL2 | 92.60 | 7.40 | ||
3 | liquid | 100.00 | 0 | 8.98 |
RL3 | 95.00 | 5.00 | ||
4 | liquid | 40.00 | 60.00 | 48.93 |
RL4 | 47.30 | 52.70 | ||
5 | liquid | 40.00 | 60.00 | 65.34 |
RL5 | 63.60 | 36.40 | ||
6 | liquid | 40.00 | 60.00 | 78.68 |
RL6 | 82.00 | 18.00 | ||
7 | liquid | 40.00 | 60.00 | 11.37 |
RL7 | 44.20 | 55.80 |
表6 各实验工况的水油相比例与液体反应率
Table 6 Comparison of water/oil and liquid reaction rate of experiment scenario
Experiment scenario | Water/%(mass) | Oil/%(mass) | 液体反应率η/% | |
---|---|---|---|---|
1 | liquid | 100.00 | 0 | 3.21 |
RL1 | 93.40 | 6.60 | ||
2 | liquid | 100.00 | 0 | 6.70 |
RL2 | 92.60 | 7.40 | ||
3 | liquid | 100.00 | 0 | 8.98 |
RL3 | 95.00 | 5.00 | ||
4 | liquid | 40.00 | 60.00 | 48.93 |
RL4 | 47.30 | 52.70 | ||
5 | liquid | 40.00 | 60.00 | 65.34 |
RL5 | 63.60 | 36.40 | ||
6 | liquid | 40.00 | 60.00 | 78.68 |
RL6 | 82.00 | 18.00 | ||
7 | liquid | 40.00 | 60.00 | 11.37 |
RL7 | 44.20 | 55.80 |
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 |
---|---|---|---|---|---|
0.01393 | 0.02399 | 0.01774 | 0.005886 | 0.002704 | 0.002352 |
RL1 | RL2 | RL3 | RL4 | RL5 | RL6 |
0.04528 | 0.04455 | 0.04105 | 0.01860 | 0.02120 | 0.03056 |
表7 残焦与重整液中的2H/1H(mol)
Table 7 2H/1H (mol) in RL and RC
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 |
---|---|---|---|---|---|
0.01393 | 0.02399 | 0.01774 | 0.005886 | 0.002704 | 0.002352 |
RL1 | RL2 | RL3 | RL4 | RL5 | RL6 |
0.04528 | 0.04455 | 0.04105 | 0.01860 | 0.02120 | 0.03056 |
Element | RC 1 | RC 2 | RC 3 | RC 4 | RC 5 | RC 6 |
---|---|---|---|---|---|---|
C | 40.11 | 35.78 | 30.31 | 39.35 | 36.50 | 33.44 |
H | 0.66 | 0.73 | 0.43 | 0.65 | 0.67 | 0.47 |
N | 1.37 | 1.46 | 1.54 | 1.81 | 1.64 | 1.71 |
S | 0.33 | 0.24 | 0.41 | 0.28 | 0.38 | 0.43 |
Element | RL 1 | RL 2 | RL 3 | RL 4 | RL 5 | RL 6 |
C | 59.11 | 63.12 | 60.11 | 63.11 | 62.74 | 65.75 |
H | 11.41 | 12.44 | 11.77 | 10.29 | 8.33 | 9.21 |
N | 3.22 | 2.01 | 0.44 | 0.37 | 0.42 | 0.33 |
S | 0.24 | 0.34 | 0.41 | 0.22 | 0.24 | 0.19 |
表8 残焦与重整液中有机质的元素分析
Table 8 Chemical analyses of organic components in RC and RL/%(mass)
Element | RC 1 | RC 2 | RC 3 | RC 4 | RC 5 | RC 6 |
---|---|---|---|---|---|---|
C | 40.11 | 35.78 | 30.31 | 39.35 | 36.50 | 33.44 |
H | 0.66 | 0.73 | 0.43 | 0.65 | 0.67 | 0.47 |
N | 1.37 | 1.46 | 1.54 | 1.81 | 1.64 | 1.71 |
S | 0.33 | 0.24 | 0.41 | 0.28 | 0.38 | 0.43 |
Element | RL 1 | RL 2 | RL 3 | RL 4 | RL 5 | RL 6 |
C | 59.11 | 63.12 | 60.11 | 63.11 | 62.74 | 65.75 |
H | 11.41 | 12.44 | 11.77 | 10.29 | 8.33 | 9.21 |
N | 3.22 | 2.01 | 0.44 | 0.37 | 0.42 | 0.33 |
S | 0.24 | 0.34 | 0.41 | 0.22 | 0.24 | 0.19 |
Retention time/min | Name | Content/%(area) |
---|---|---|
RL4 | ||
2.825 | benzene | 17.88 |
5.294 | toluene | 17.32 |
8.885 | ethylbenzene | 3.36 |
9.248 | benzene, 1, 3-dimethyl- | 2.08 |
9.303 | p-xylene | 1.33 |
10.077 | styrene | 10.32 |
13.551 | benzonitrile | 7.94 |
13.974 | benzene, 1-ethenyl-2-methyl- | 3.61 |
15.625 | 1H-indene, 1-chloro-2, 3-dihydro- | 2.98 |
16.050 | phenol, 2-methyl- | 1.17 |
16.386 | acetophenone | 3.68 |
16.775 | phenol, 3-methyl- | 2.04 |
19.114 | 2-methylindene | 1.57 |
19.316 | naphthalene | 1.52 |
20.185 | azulene | 6.58 |
23.449 | naphthalene, 2-methyl- | 3.02 |
25.740 | biphenyl | 1.96 |
RL5 | ||
2.824 | benzene | 2.63 |
5.293 | toluene | 2.84 |
9.245 | benzene, 1, 3-dimethyl- | 1.41 |
10.073 | styrene | 9.51 |
13.553 | benzonitrile | 5.07 |
13.972 | benzene, 1-ethenyl-3-methyl- | 1.98 |
15.623 | 1H-indene, 1-chloro-2, 3-dihydro- | 6.77 |
19.317 | naphthalene | 26.77 |
23.448 | naphthalene, 2-methyl- | 6.10 |
25.740 | biphenyl | 4.59 |
27.542 | biphenylene | 4.35 |
30.839 | fluorene | 2.05 |
35.275 | phenanthrene | 7.04 |
35.511 | anthracene | 2.10 |
39.159 | naphthalene, 2-phenyl- | 1.03 |
40.854 | fluoranthene | 2.21 |
41.841 | pyrene | 2.57 |
RL6 | ||
2.824 | benzene | 2.51 |
5.294 | toluene | 1.7 |
10.071 | styrene | 7.23 |
13.561 | benzonitrile | 1.91 |
15.617 | 1H-indene, 1-chloro-2, 3-dihydro- | 6.09 |
19.316 | naphthalene | 34.42 |
23.448 | naphthalene, 2-methyl- | 2.19 |
23.872 | naphthalene, 1-methyl- | 1.21 |
25.741 | biphenyl | 3.83 |
27.075 | naphthalene, 2-ethenyl- | 1.37 |
27.543 | biphenylene | 6.15 |
30.839 | fluorene | 2.08 |
35.28 | phenanthrene | 8.64 |
35.511 | anthracene | 2.30 |
39.159 | naphthalene, 2-phenyl- | 1.15 |
41.840 | pyrene | 3.36 |
47.581 | triphenylene | 2.20 |
附表1 重整液油相中主要成分相对含量 Schedule 1 Relative content of main components in oil phase of RL
Retention time/min | Name | Content/%(area) |
---|---|---|
RL4 | ||
2.825 | benzene | 17.88 |
5.294 | toluene | 17.32 |
8.885 | ethylbenzene | 3.36 |
9.248 | benzene, 1, 3-dimethyl- | 2.08 |
9.303 | p-xylene | 1.33 |
10.077 | styrene | 10.32 |
13.551 | benzonitrile | 7.94 |
13.974 | benzene, 1-ethenyl-2-methyl- | 3.61 |
15.625 | 1H-indene, 1-chloro-2, 3-dihydro- | 2.98 |
16.050 | phenol, 2-methyl- | 1.17 |
16.386 | acetophenone | 3.68 |
16.775 | phenol, 3-methyl- | 2.04 |
19.114 | 2-methylindene | 1.57 |
19.316 | naphthalene | 1.52 |
20.185 | azulene | 6.58 |
23.449 | naphthalene, 2-methyl- | 3.02 |
25.740 | biphenyl | 1.96 |
RL5 | ||
2.824 | benzene | 2.63 |
5.293 | toluene | 2.84 |
9.245 | benzene, 1, 3-dimethyl- | 1.41 |
10.073 | styrene | 9.51 |
13.553 | benzonitrile | 5.07 |
13.972 | benzene, 1-ethenyl-3-methyl- | 1.98 |
15.623 | 1H-indene, 1-chloro-2, 3-dihydro- | 6.77 |
19.317 | naphthalene | 26.77 |
23.448 | naphthalene, 2-methyl- | 6.10 |
25.740 | biphenyl | 4.59 |
27.542 | biphenylene | 4.35 |
30.839 | fluorene | 2.05 |
35.275 | phenanthrene | 7.04 |
35.511 | anthracene | 2.10 |
39.159 | naphthalene, 2-phenyl- | 1.03 |
40.854 | fluoranthene | 2.21 |
41.841 | pyrene | 2.57 |
RL6 | ||
2.824 | benzene | 2.51 |
5.294 | toluene | 1.7 |
10.071 | styrene | 7.23 |
13.561 | benzonitrile | 1.91 |
15.617 | 1H-indene, 1-chloro-2, 3-dihydro- | 6.09 |
19.316 | naphthalene | 34.42 |
23.448 | naphthalene, 2-methyl- | 2.19 |
23.872 | naphthalene, 1-methyl- | 1.21 |
25.741 | biphenyl | 3.83 |
27.075 | naphthalene, 2-ethenyl- | 1.37 |
27.543 | biphenylene | 6.15 |
30.839 | fluorene | 2.08 |
35.28 | phenanthrene | 8.64 |
35.511 | anthracene | 2.30 |
39.159 | naphthalene, 2-phenyl- | 1.15 |
41.840 | pyrene | 3.36 |
47.581 | triphenylene | 2.20 |
1 | 中华人民共和国国家统计局. 中国统计年鉴2018[M]. 北京: 中国统计出版社, 2018. |
National Bureau of Statistics of People s Republic of China. China Statistical Yearbook 2018[M]. Beijing: China Statistics Press, 2018. | |
2 | Chen D, Yin L, Wang H, et al. Reprint of: pyrolysis technologies for municipal solid waste: a review[J]. Waste Management, 2015, 37: 116-136. |
3 | Zhang Q, Chang J, Wang T, et al. Review of biomass pyrolysis oil properties and upgrading research [J]. Energy Conversion and Management, 2007, 48(1): 87-92. |
4 | Xie Y R, Shen L H, Xiao J, et al. Influences of additives on steam gasification of biomass(1): Pyrolysis procedure[J]. Energy & Fuels, 2009, 23(10): 5199-5205. |
5 | Azuara M, Fonts I, Bimbela F, et al. Catalytic post-treatment of the vapors from sewage sludge pyrolysis by means of γ-Al2O3: effect on the liquid product properties[J]. Fuel Processing Technology, 2015, 130: 252-262. |
6 | Huang Q, Lu P, Hu B, et al. Cracking of model tar species from the gasification of municipal solid waste using commercial and waste-derived catalysts[J]. Energy & Fuels, 2016, 30(7): 5740-5748. |
7 | 李佳珊. 城市生活垃圾热解过程中重金属残留实验研究[D]. 沈阳: 东北大学, 2009. |
Li J S. Experimental study on heavy metal residues in pyrolysis of municipal solid waste[D]. Shenyang: Northeastern University, 2009. | |
8 | Liu S, Yin W, Wu R, et al. Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal[J]. Energy & Fuels, 2014, 28(1): 58-66. |
9 | Min Z, Yimsiri P, Asadullah M, et al.Catalytic reforming of tar during gasification (Ⅱ): Char as a catalyst or as a catalyst support for tar reforming[J].Fuel, 2011, 90(7): 2545-2552. |
10 | Wang N, Chen D, Arena U, et al. Hot char-catalytic reforming of volatiles from MSW pyrolysis[J]. Applied Energy, 2017, 191: 111-124. |
11 | King H H, Stock L M. Aspects of the chemistry of donor solvent coal dissolution. The hydrogen-deuterium exchange reactions of tetralin-d12 with Illinois No. 6 coal, coal products and related compounds[J]. Fuel, 1982, 61(3): 257-264. |
12 | Cronauer D C, Mcneil R I, Young D C, et al. Hydrogen/deuterium transfer in coal liquefaction[J]. Fuel, 1982, 61(7): 610-619. |
13 | Brandes S D, Graff R A, Gorbaty M L, et al. Modification of coal by subcritical steam: an examination of modified Illinois No. 6 coal[J]. Energy & Fuels, 1989, 3(4): 494-498. |
14 | Wilson M A, Vassallo A M, Collin P J, et al. Deuterium as a tracer in coal liquefaction (2): Non-catalytic studies[J]. Fuel Processing Technology, 1984, 8(3): 213-229. |
15 | Collin P J, Wilson M A. Use of INEPT and GASPE n.m.r. pulse sequences: assignment of position of incorporation of deuterium into tetralin during coal hydrogenation[J]. Fuel, 1983, 62(11): 1243-1246. |
16 | Skowronski R P, Ratto J J, Goldberg I B, et al. Hydrogen incorporation during coal liquefaction[J]. Fuel, 1984, 63 (4): 440-448. |
17 | Wang L, Pan T, Liu P, et al. Hydrogen transfer route during hydrothermal treatment lignite using isotope tracer method and improving pyrolysis tar yield[J]. Energy & Fuels, 2016, 30(6): 121-134. |
18 | 连奕新, 杨意泉, 方维平. 钴钼基水煤气变换催化剂及其催化反应工艺[J].石油化工, 2011, 40(4): 347-357. |
Lian Y X, Yang Y Q, Fang W P. Cobalt-molybdenum-based water gas shift catalyst and catalytic reaction process thereof[J]. Petrochemical Industry, 2011, 40(4): 347-357. | |
19 | Lima A A G, Nele M, Moreno E L, et al. Composition effects on the activity of Cu-ZnO-Al2O3 based catalysts for the water gas shift reaction: a statistical approach[J]. Applied Catalysis A General, 1998, 171(1): 31-43. |
20 | Klinghoffer N B, Castaldi M J, Nzihou A. Influence of char composition and inorganics on catalytic activity of char from biomass gasification[J]. Fuel, 2015, 157: 37-47. |
21 | Badger G M, Kimber R W L, Spotswood T M. Mode of formation of 3, 4-benzopyrene in human environment[J]. Nature, 1960, 187(4738): 663-665. |
22 | Nelson P F, Smith I W, Tyler R J, et al. Pyrolysis of coal at high temperatures[J]. Energy & Fuels, 1988, 2(4): 391-400. |
23 | Stock L M, Wasielewski M R. The trifluoromethyl group in chemistry and spectroscopy. Carbon-fluorine hyperconjugation[M]//Taft R W. Progress in Physical Organic Chemistry. John Wiley & Sons, Inc., 1981: 253-313. |
24 | 翟建荣, 钟梅, 马凤云, 等. 水蒸气对煤焦油模化物裂解行为及析碳的影响[J]. 化工学报, 2019, 70(8): 2898-2908. |
Zhai J R, Zhong M, Ma F Y, et al. Effect of steam atmosphere on cracking behavior and carbon deposition of coal tar model compounds [J]. CIESC Journal, 2019, 70(8): 2898-2908. |
[1] | 崔莉, 樊宇亨, 李莎莎, 白瑞兵, 郭彦霞, 程芳琴. 化学交换法分离锂同位素的理论及新技术研究进展[J]. 化工学报, 2021, 72(6): 3215-3227. |
[2] | 黄鑫,林玉霞,阎炳会,刘月明. 失活TS-1高效催化 |
[3] | 梅振飞, 陈明, 陈德珍, 洪鎏, 胡雨燕. 垃圾热解-挥发分重整过程中基于产物导向的催化剂选择[J]. 化工学报, 2019, 70(8): 3104-3112. |
[4] | 胡艳军, 马文超, 吴亚男, 陈江. 不同来源污泥热解油中多环芳烃分布特征[J]. 化工学报, 2016, 67(7): 3016-3022. |
[5] | 高云虎, 徐志红, 余兆钧, 费维扬. 重氧水分离级联中氘和氧18浓度分布及其影响[J]. 化工学报, 2014, 65(1): 213-219. |
[6] | 杨海涛, 郑兴, 姚兰, 谢益民. 同位素标记法用于植物纤维中LCC蒸煮过程中结构变化的研究[J]. 化工学报, 2013, 64(3): 1069-1075. |
[7] | 王 巍,刘晶晶,张 龙. 苯酚催化氢转移制环己酮的新工艺[J]. 化工进展, 2013, 32(09): 2156-2159. |
[8] | 高 振,熊 强,徐 晴,宋 萍,李 霜. 代谢通量分析在酶合成过程中的应用研究进展[J]. 化工进展, 2013, 32(07): 1625-1628. |
[9] | 王晓英,陆光达,秦 城,吕俊波. 氢同位素气相色谱分析研究现状与展望 [J]. CIESC Journal, 2011, 30(6): 1170-. |
[10] | 刘玉卿,海热提. 防溴型环氧树脂电路板热解 [J]. CIESC Journal, 2011, 62(3): 823-828. |
[11] | 王 慧,邹 滢,余 锋,翁惠新. 废轮胎热解油的化学组成分布 [J]. CIESC Journal, 2011, 30(3): 656-. |
[12] | 张长森1,2,3,石 文2,3,徐兴敏2,3,张瑞芹2,3. 木屑快速热解液化与产品分析 [J]. CIESC Journal, 2010, 29(5): 952-. |
[13] | 龚 灵,周少东,陈新志. 氢转移反应的研究概述 [J]. CIESC Journal, 2010, 29(3): 478-. |
[14] | 韩军, 任兴碧, 官锐, 胡胜, 熊亮萍. Ni-Rh/Al2O3催化剂上甲烷-氘化氢间的氢氘交换性能 [J]. 化工学报, 2009, 60(S1): 68-72. |
[15] | 夏修龙. H2/HD/HT电解-精馏级联分离过程理论分析 [J]. CIESC Journal, 2009, 60(7): 1725-1729. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||