1 |
阎中, 熊娅, 王凯军, 等. 诱导结晶工艺处理含铜废水[J]. 化工学报, 2009, 60(10): 2603-2608.
|
|
Yan Z, Xiong Y, Wang K J, et al. Induction crystallization process for treatment of copper-containing wastewater[J]. CIESC Journal, 2009, 60(10): 2603-2608.
|
2 |
陈熙, 徐新阳, 赵冰, 等. 喷射床电沉积法处理铜镍混合废水[J]. 化工学报, 2015, 66(12): 5060-5066.
|
|
Chen X, Xu X Y, Zhao B, et al. Treatment of copper-nickel mixed wastewater by spray bed electrodeposition[J]. CIESC Journal, 2015, 66(12): 5060-5066.
|
3 |
张厚, 施力匀, 杨春, 等. 电镀废水处理技术研究进展[J]. 电镀与精饰, 2018, (2): 36-41.
|
|
Zhang H, Shi L J, Yang C, et al. Research progress in electroplating wastewater treatment technology[J]. Plating & Finishing, 2018, (2): 36-41.
|
4 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 铜、镍、钴工业污染物排放标准: GB 25467—2010[S]. 北京: 中国环境科学出版社, 2010.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People s Republic of China, Standardization Administration of the People s Republic of China. Copper, nickel and cobalt industrial pollutant discharge standards: GB 25467—2010[S]. Beijing: China Environmental Science Press, 2010.
|
5 |
Adhoum N, Monser L, Bellakhal N, et al. Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(Ⅵ) by electrocoagulation[J]. J. Hazard. Mater., 2004, 112: 207-213.
|
6 |
Chiu H, Tsang K, Lee R. Treatment of electroplating wastes[J]. Water Pollut. Control (GB), 1987, 86: 12.
|
7 |
Peng C, Chai L, Tang C, et al. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal[J]. Journal of Environmental Sciences, 2017, 51(1): 222.
|
8 |
Verma A, Bishnoi N R, Gupta A. Optimization study for Pb(Ⅱ) and COD sequestration by consortium of sulphate-reducing bacteria[J]. Applied Water Science, 2017, 7(5): 2309-2320.
|
9 |
Li H, Chen Y, Long J, et al. Simultaneous removal of thallium and chloride from a highly saline industrial wastewater using modified anion exchange resins[J]. Journal of Hazardous Materials, 2017, 333: 179-185.
|
10 |
Li X F, Shi S Y, Cao H B, et al. Comparative study of chromium(Ⅵ) removal from simulated industrial wastewater with ion exchange resins[J]. Russian Journal of Physical Chemistry A, 2018, 92(6): 1229-1236.
|
11 |
Lee C G, Lee S, Park J A, et al. Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam[J]. Chemosphere, 2017, 166: 203-211.
|
12 |
Park J A, Kang J K, Lee S C, et al. Electrospun poly(acrylic acid)/poly(vinyl alcohol) nanofibrous adsorbents for Cu(Ⅱ) removal from industrial plating wastewater[J]. RSC Advances, 2017, 7(29): 18075-18084.
|
13 |
Jesus J M S, Scarazzato T, Tenório J A S, et al. Permselectivity study of ion-exchange membranes in the presence of Cu-HEDP complexes from a copper plating wastewater treatment[M]// Applications of Process Engineering Principles in Materials Processing, Energy and Environmental Technologies. Springer International Publishing, 2017.
|
14 |
Chang S H. A comparative study of batch and continuous bulk liquid membranes in the removal and recovery of Cu(Ⅱ) ions from wastewater[J]. Water Air & Soil Pollution, 2018, 229(1): 22.
|
15 |
Sun H, Wang H, Wang H, et al. Enhanced removal of heavy metals from electroplating wastewater through electrocoagulation using carboxymethyl chitosan as corrosion inhibitor for steel anode[J]. Environmental Science: Water Research & Technology, 2018, 4(8): 1105-1113.
|
16 |
Min K J, Choi S Y, Jang D, et al. Separation of metals from electroplating wastewater using electrodialysis[J]. Energy Sources Part A Recovery Utilization and Environmental Effects, 2019, (3): 1-10.
|
17 |
Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review[J]. Journal of Environmental Management, 2011, 92(3): 407-418.
|
18 |
Xu P, Zeng G M, Huang D L, et al. Use of iron oxide nanomaterials in wastewater treatment: a review[J]. Science of the Total Environment, 2012, 424: 1-10.
|
19 |
Azmi A A, Jai J, Zamanhuri N A, et al. Precious metals recovery from electroplating wastewater: a review[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 3581): 012024.
|
20 |
Yang Y, Lee S W, Ghasemi H, et al. Charging-free electrochemical system for harvesting low-grade thermal energy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(48): 17011-17016.
|
21 |
Rahimi M, Straub A P, Zhang F, et al. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity[J]. Energy & Environmental Science, 2018, 11(2): 276-285.
|
22 |
Zhang F, Liu J, Yang W, et al. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power[J]. Energy Environ. Sci., 2015, 8(1): 343-349.
|
23 |
Zhang F, Labarge N, Yang W, et al. Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures[J]. ChemSusChem, 2015, 8(6): 1043-1048.
|
24 |
Rahimi M, Angelo A D, Gorski C A, et al. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery[J]. Journal of Power Sources, 2017, 351: 45-50.
|
25 |
Rahimi M, Kim T, Gorski C A, et al. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity[J]. Journal of Power Sources, 2018, 373: 95-102.
|
26 |
Rahimi M, Zhu L, Kowalski K L, et al. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane[J]. Journal of Power Sources, 2017, 342: 956-963.
|
27 |
Zhu X, Rahimi M, Gorski C A, et al. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat[J]. ChemSusChem, 2016, 9(8): 873-879.
|
28 |
李彦翔, 张亮, 朱恂, 等. 传质对热可再生氨电池性能的影响[J]. 工程热物理学报, 2019, (3): 668-671.
|
|
Li Y X, Zhang L, Zhu X, et al. Effect of mass transfer on the performance of thermally regenerative ammonia-based battery[J]. Journal of Engineering Thermophysics, 2019, (3): 668-671.
|
29 |
Wang W, Shu G, Tian H, et al. A numerical model for a thermally-regenerative ammonia-based flow battery using for low grade waste heat recovery[J]. Journal of Power Sources, 2018, 388: 32-44.
|
30 |
陈莎莎. 改进版分光光度法测定水中铜离子浓度[J]. 环球市场信息导报: 理论, 2014, (8): 224.
|
|
Chen S S. Determination of copper ion concentration in water by improved spectrop-hotometry[J]. Global Market Information Herald: Theory, 2014, (8): 224.
|
31 |
杨润萍, 李晓霞, 丁磊, 等. 污染水中铜离子浓度的快速测定[J]. 中国卫生检验杂志, 2007, 17(12): 2217-2218.
|
|
Yang R P, Li X X, Ding L, et al. Rapid determination of copper ion concentration in polluted water[J]. Chinese Journal of Health Laboratory Technology, 2007, 17(12): 2217-2218.
|
32 |
Mollah M Y, Schennach R, Parga J R, et al. Electrocoagulation (EC)—science and applications.[J]. Journal of Hazardous Materials, 2001, 84(1): 29-41.
|