化工学报 ›› 2019, Vol. 70 ›› Issue (8): 3104-3112.DOI: 10.11949/0438-1157.20190325
收稿日期:
2019-04-01
修回日期:
2019-05-09
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
陈德珍
作者简介:
梅振飞(1994—),男,硕士研究生,<email>1732686@tongji.edu.cn</email>
基金资助:
Zhenfei MEI(),Ming CHEN,Dezhen CHEN(),Liu HONG,Yuyan HU
Received:
2019-04-01
Revised:
2019-05-09
Online:
2019-08-05
Published:
2019-08-05
Contact:
Dezhen CHEN
摘要:
为进一步提升垃圾热解产物品质,提高目标产物的产量,在垃圾热解反应器下游设置自源半焦重整挥发分的反应器,并在自源半焦中混入白云石(D)和活性污泥炭(ASSC)以提升催化效果,获得更多的气体资源以及高品质的油。结果表明,550℃下垃圾热解产生的挥发分经同温自源半焦重整,气体产率可提高44.29%,热解液产率降低了41.33%;但热解油中的脂肪烃含量下降,单环芳烃含量增加。添加煅烧白云石后,热解油转化率提高,热解油中的脂肪烃含量增加。添加ASSC后,H2、CO产率显著提高;热解液产率进一步降低。特别是与自源半焦按照等质量与ASSC混合时,热解液产率最低,自30.44%降至11.25%,同时其含水率自57.23%降至35.64%。总体上,垃圾热解自源半焦具有促进热解油中单环芳烃生成和脂肪分解的作用;而白云石和ASSC都能促使热解油中脂肪烃的浓度提升,尤其是ASSC。白云石对应着气体产物中更高的CH4、H2和CO的产率,而ASSC进一步促进了H2和CO的生成、H2O的消耗但同时抑制了CH4的生成。当以合成气为目标产品时,推荐加入ASSC并与自源半焦按质量比1∶1混合,其产气量达到45.5%或0.50 m3/(kg MSW),H2+CO体积分数达到53.87%。
中图分类号:
梅振飞, 陈明, 陈德珍, 洪鎏, 胡雨燕. 垃圾热解-挥发分重整过程中基于产物导向的催化剂选择[J]. 化工学报, 2019, 70(8): 3104-3112.
Zhenfei MEI, Ming CHEN, Dezhen CHEN, Liu HONG, Yuyan HU. Product oriented catalyst choice during MSW pyrolysis and volatile reforming process[J]. CIESC Journal, 2019, 70(8): 3104-3112.
Composition/%(mass) | HHV/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Kitchen wastes | Paper | Cloth and fiber | Plastics | Wood | Residue | |||
15.38±0.80 | 5.79±0.16 | 27.24±0.69 | 21.85±9.57 | 3.24±0.40 | 26.47±0.98 | 17.44±0.18 | ||
Ultimate analysis①/%(mass) | Proximate analysis/%(mass) | |||||||
C | H | N | O② | S | M | A | V | FC |
43.17 ±1.78 | 6.03 ±0.47 | 2.52 ±0.17 | 48.06 ±0.68 | 0.22 ±0.01 | 6.52 ±0.28 | 26.02 ±0.88 | 60.65 ±1.11 | 6.81 ±0.04 |
表1 生活垃圾的组成及化学分析(空气干燥基)
Table 1 Components and elemental analysis of MSW sample (air dry basis)
Composition/%(mass) | HHV/(MJ/kg) | |||||||
---|---|---|---|---|---|---|---|---|
Kitchen wastes | Paper | Cloth and fiber | Plastics | Wood | Residue | |||
15.38±0.80 | 5.79±0.16 | 27.24±0.69 | 21.85±9.57 | 3.24±0.40 | 26.47±0.98 | 17.44±0.18 | ||
Ultimate analysis①/%(mass) | Proximate analysis/%(mass) | |||||||
C | H | N | O② | S | M | A | V | FC |
43.17 ±1.78 | 6.03 ±0.47 | 2.52 ±0.17 | 48.06 ±0.68 | 0.22 ±0.01 | 6.52 ±0.28 | 26.02 ±0.88 | 60.65 ±1.11 | 6.81 ±0.04 |
Catalyst | CaO | SiO2 | Fe2O3 | K2O | Al2O3 | P2O5 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|
MSW char | 26.80 | 14.70 | 10.10 | 4.49 | 3.92 | 3.77 | 1.78 | 1.47 | 0.77 |
dolomite | 53.20 | 0.47 | 0.36 | 0.02 | 0.08 | — | 36.97 | — | — |
ASSC | 3.93 | 13.5 | 11.5 | 44.1 | 5.38 | 6.85 | 0.76 | 0.64 | 0.75 |
表2 催化剂的组成
Table 2 Chemical composition of catalysts/%(mass)
Catalyst | CaO | SiO2 | Fe2O3 | K2O | Al2O3 | P2O5 | MgO | Na2O | TiO2 |
---|---|---|---|---|---|---|---|---|---|
MSW char | 26.80 | 14.70 | 10.10 | 4.49 | 3.92 | 3.77 | 1.78 | 1.47 | 0.77 |
dolomite | 53.20 | 0.47 | 0.36 | 0.02 | 0.08 | — | 36.97 | — | — |
ASSC | 3.93 | 13.5 | 11.5 | 44.1 | 5.38 | 6.85 | 0.76 | 0.64 | 0.75 |
Catalyst | Pile density/ (g/cm3) | BET surface area/ (cm2/g) | Total pore volume/ (cm3/g) | Average pore diameter/mm |
---|---|---|---|---|
MSW char | 0.50 | 21.70 | 0.030 | 5.52 |
dolomite | 1.40 | 6.88 | 0.033 | 19.88 |
ASSC | 0.46 | 178.53 | 0.234 | 5.25 |
表3 催化剂堆积密度及孔隙结构
Table 3 Pile density and pore structure of catalyst
Catalyst | Pile density/ (g/cm3) | BET surface area/ (cm2/g) | Total pore volume/ (cm3/g) | Average pore diameter/mm |
---|---|---|---|---|
MSW char | 0.50 | 21.70 | 0.030 | 5.52 |
dolomite | 1.40 | 6.88 | 0.033 | 19.88 |
ASSC | 0.46 | 178.53 | 0.234 | 5.25 |
Reaction | ΔH 298K | Number |
---|---|---|
C+H2O?CO+H2 | +131 MJ/kmol | R1 |
CO+H2O?CO2+H2 | -41 MJ/kmol | R2 |
C n H m +pH2O?C n - p H y +pCO+(p+(m-y)/2)H2 | >0 | R3 |
C+CO2 ?2CO | +172 MJ/kmol | R4 |
C n H m +nCO2 ?2nCO+(m/2)H2 | >0 | R5 |
CO+3H2 ?CH4+H2O | -227 MJ/kmol | R6 |
C n H2 n +2 ? nC+(n+1)H2 | >0 | R7 |
CaO+H2O?Ca(OH)2 | -65 MJ/kmol | R8 |
Ca(OH)2+CO2 ?CaCO3+H2O | -113 MJ/kmol | R9 |
表4 重整过程中的化学反应
Table 4 Main reactions during reforming process
Reaction | ΔH 298K | Number |
---|---|---|
C+H2O?CO+H2 | +131 MJ/kmol | R1 |
CO+H2O?CO2+H2 | -41 MJ/kmol | R2 |
C n H m +pH2O?C n - p H y +pCO+(p+(m-y)/2)H2 | >0 | R3 |
C+CO2 ?2CO | +172 MJ/kmol | R4 |
C n H m +nCO2 ?2nCO+(m/2)H2 | >0 | R5 |
CO+3H2 ?CH4+H2O | -227 MJ/kmol | R6 |
C n H2 n +2 ? nC+(n+1)H2 | >0 | R7 |
CaO+H2O?Ca(OH)2 | -65 MJ/kmol | R8 |
Ca(OH)2+CO2 ?CaCO3+H2O | -113 MJ/kmol | R9 |
实验工况 | 干气产率/ (m3/(kg MSW)) | HHV/(MJ/m3) | 气体能量/ (MJ/(kg MSW)) |
---|---|---|---|
S1 | 0.21 | 14.02 | 2.94 |
S2 | 0.39 | 18.07 | 7.05 |
S3 | 0.41 | 18.01 | 7.38 |
S4 | 0.45 | 18.93 | 8.52 |
S5 | 0.46 | 18.87 | 8.68 |
S6 | 0.47 | 18.60 | 8.74 |
S7 | 0.45 | 18.80 | 8.46 |
S8 | 0.47 | 18.57 | 8.73 |
S9 | 0.50 | 17.15 | 8.58 |
S10 | 0.52 | 16.98 | 8.83 |
S11 | 0.47 | 18.79 | 8.83 |
表5 干气产量及气体产物热值
Table 5 Dry gas yield and higher heat value of gas products
实验工况 | 干气产率/ (m3/(kg MSW)) | HHV/(MJ/m3) | 气体能量/ (MJ/(kg MSW)) |
---|---|---|---|
S1 | 0.21 | 14.02 | 2.94 |
S2 | 0.39 | 18.07 | 7.05 |
S3 | 0.41 | 18.01 | 7.38 |
S4 | 0.45 | 18.93 | 8.52 |
S5 | 0.46 | 18.87 | 8.68 |
S6 | 0.47 | 18.60 | 8.74 |
S7 | 0.45 | 18.80 | 8.46 |
S8 | 0.47 | 18.57 | 8.73 |
S9 | 0.50 | 17.15 | 8.58 |
S10 | 0.52 | 16.98 | 8.83 |
S11 | 0.47 | 18.79 | 8.83 |
1 | 中国环境保护产业协会城市生活垃圾处理专业委员会 . 城市生活垃圾处理行业2017年发展综述 [J]. 中国环保产业, 2017, (4): 9-15. |
China Environmental Protection Industry Association, Municipal Solid Waste Disposal Professional Committee . Overview of the development of municipal solid waste disposal industry in 2017 [J]. China Environmental Protection Industry, 2017, (4): 9-15. | |
2 | Chen D , Yin L , Wang H , et al . Reprint of: pyrolysis technologies for municipal solid waste: a review [J]. Waste Manag., 2015, 37: 116-136. |
3 | Arena U . Process and technological aspects of municipal solid waste gasification. A review [J]. Waste Manag., 2012, 32(4): 625-639. |
4 | Zhang Q , Chang J , Wang T , et al . Review of biomass pyrolysis oil properties and upgrading research [J]. Energy Conversion and Management, 2007, 48(1): 87-92. |
5 | Xie Y R , Shen L H , Xiao J , et al . Influences of additives on steam gasification of biomass (1): Pyrolysis procedure [J]. Energy & Fuels, 2009, 23(10): 5199-5205. |
6 | Azuara M , Fonts I , Bimbela F , et al . Catalytic post-treatment of the vapors from sewage sludge pyrolysis by means of γ-Al2O3: effect on the liquid product properties [J]. Fuel Processing Technology, 2015, 130: 252-262. |
7 | Huang Q , Lu P , Hu B , et al . Cracking of model tar species from the gasification of municipal solid waste using commercial and waste-derived catalysts [J]. Energy & Fuels, 2016, 30(7): 5740-5748. |
8 | Wang N , Chen D , Arena U , et al . Hot char-catalytic reforming of volatiles from MSW pyrolysis [J]. Applied Energy, 2017, 191: 111-124. |
9 | He M , Xiao B , Liu S , et al . Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts [J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 181-187. |
10 | Virginie M , Adánez J , Courson C , et al . Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed [J]. Applied Catalysis B: Environmental, 2012, 121/122: 214-222. |
11 | Cao J P , Shi P , Zhao X Y , et al . Catalytic reforming of volatiles and nitrogen compounds from sewage sludge pyrolysis to clean hydrogen and synthetic gas over a nickel catalyst [J]. Fuel Processing Technology, 2014, 123: 34-40. |
12 | Shen Y , Yoshikawa K . Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review [J]. Renewable and Sustainable Energy Reviews, 2013, 21: 371-392. |
13 | Devi L , Ptasinski K J , Janssen F J J G . A review of the primary measures for tar elimination in biomass gasification processes [J]. Biomass & Bioenergy, 2003, 24(2): 125-140. |
14 | Whyte H E , Loubar K , Awad S , et al . Pyrolytic oil production by catalytic pyrolysis of refuse-derived fuels: investigation of low cost catalysts [J]. Fuel Processing Technology, 2015, 140: 32-38. |
15 | Yu G , Chen D , Arena U , et al . Reforming sewage sludge pyrolysis volatile with Fe-embedded char: minimization of liquid product yield [J]. Waste Manag., 2018, 73: 464-475. |
16 | Gong W , Yin X L , Xie J J , et al . Kinetic study of tar catalytic cracking over porous granular dolomite catalyst [J]. Acta Energiae Solaris Sinica, 2010, 31(7): 800-805. |
17 | Berrueco C , Montané D , Matas Güell B , et al . Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed [J]. Energy, 2014, 66: 849-859. |
18 | Orío A , José Corella A , Narváez I . Performance of different dolomites on hot raw gas cleaning from biomass gasification with air [J]. Industrial & Engineering Chemistry Research, 1997, 36(9): 3800-3808. |
19 | He M , Hu Z , Xiao B , et al . Hydrogen-rich gas from catalytic steam gasification of municipal solid waste (MSW): influence of catalyst and temperature on yield and product composition [J]. International Journal of Hydrogen Energy, 2009, 34(1): 195-203. |
20 | Liu S , Wang Y , Wu R , et al . Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal [J]. Energy & Fuels, 2013, 28(1): 58-66. |
21 | Gilbert P , Ryu C , Sharifi V , et al . Tar reduction in pyrolysis vapours from biomass over a hot char bed [J]. Bioresour. Technol., 2009, 100(23): 6045-6051. |
22 | Klinghoffer N B , Castaldi M J , Nzihou A . Influence of char composition and inorganics on catalytic activity of char from biomass gasification [J]. Fuel, 2015, 157: 37-47. |
23 | Feng D , Zhao Y , Zhang Y , et al . Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2 [J]. Chemical Engineering Journal, 2016, 306: 422-432. |
24 | Min Z , Yimsiri P , Asadullah M , et al . Catalytic reforming of tar during gasification (Ⅱ): Char as a catalyst or as a catalyst support for tar reforming [J]. Fuel, 2011, 90(7): 2545-2552. |
25 | Sun Q , Yu S , Wang F , et al . Decomposition and gasification of pyrolysis volatiles from pine wood through a bed of hot char [J]. Fuel, 2011, 90(3): 1041-1048. |
26 | Abu El-Rub Z , Bramer E A , Brem G . Experimental comparison of biomass chars with other catalysts for tar reduction [J]. Fuel, 2008, 87(10/11): 2243-2252. |
27 | Meesuk S , Cao J P , Sato K , et al . Study of catalytic hydropyrolysis of rice husk under nickel-loaded brown coal char [J]. Energy & Fuels, 2011, 25(11): 5438-5443. |
28 | Fisk C A , Morgan T , Ji Y , et al . Bio-oil upgrading over platinum catalysts using in situ generated hydrogen [J]. Applied Catalysis A: General, 2009, 358(2): 150-156. |
29 | Park E S , Kang B S , Kim J S . Recovery of oils with high caloric value and low contaminant content by pyrolysis of digested and dried sewage sludge containing polymer flocculants [J]. Energy & Fuels, 2008, 22(2): 1335-1340. |
30 | Rodriguez I D M , Laresgoiti M F , Cabrero M A , et al . Pyrolysis of scrap tyres [J]. Fuel Processing Technology, 2001, 72(1): 9-22. |
31 | Maher K D , Bressler D C . Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals [J]. Bioresour. Technol., 2007, 98(12): 2351-2368. |
32 | Yip K , Tian F , Hayashi J I , et al . Effect of alkali and alkaline earth metallic species on biochar reactivity and syngas compositions during steam gasification[J]. Energy & Fuels, 2010, 24(1): 173-181. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[15] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 166
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 219
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||