化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4645-4653.DOI: 10.11949/0438-1157.20190641
焦坤灵1,2(),赵阳国1,武文斐1,2(),王振峰2,龚志军1,2
收稿日期:
2019-06-10
修回日期:
2019-09-16
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
武文斐
作者简介:
焦坤灵(1984—),男,博士研究生,副教授,基金资助:
Kunling JIAO1,2(),Yangguo ZHAO1,Wenfei WU1,2(),Zhenfeng WANG2,Zhijun GONG1,2
Received:
2019-06-10
Revised:
2019-09-16
Online:
2019-12-05
Published:
2019-12-05
Contact:
Wenfei WU
摘要:
抗硫性能是评价脱硝过程中催化剂性能的关键指标,研究SO2对催化剂理化特性的影响对催化剂脱硝应用具有重要意义。通过焙烧处理白云鄂博稀土精矿得到稀土精矿催化剂,利用催化剂抗硫性能实验台,结合SEM、BET、XRD和FT-IR,分析了O2、NH3、NO气氛下SO2在催化剂表面的吸附及不同SO2浓度对催化剂催化脱硝性能的影响。结果表明, SO2对稀土精矿催化剂脱硝性能有显著的促进作用,300℃时,NO转化率从28%提高至50%,350℃时,NO转化率从42%提高至75%; SEM、BET和XRD结果表明催化剂抗硫性能测试前后的物理结构和化学组成基本保持不变,稀土精矿催化剂具有较好的抗硫性能;FT-IR结果证实SO2的吸附使稀土精矿催化剂表面B酸性位点增多,催化剂对NH3的吸附能力增强,因此有利于提高催化剂活性。研究结果可为白云鄂博稀土精矿催化剂NH3-SCR脱硝应用过程中抗硫性能提供有价值的基础数据参考。
中图分类号:
焦坤灵, 赵阳国, 武文斐, 王振峰, 龚志军. SO2对稀土精矿催化剂NH3-SCR脱硝催化性能的影响[J]. 化工学报, 2019, 70(12): 4645-4653.
Kunling JIAO, Yangguo ZHAO, Wenfei WU, Zhenfeng WANG, Zhijun GONG. Effect of SO2 on catalytic performance of rare earth concentrate catalyst for NH3-SCR denitrification[J]. CIESC Journal, 2019, 70(12): 4645-4653.
元素 | 含量/% |
---|---|
CeO2 | 28.9 |
CaO | 9.3 |
La2O3 | 17.9 |
Fe2O3 | 3.7 |
Nd2O3 | 9.6 |
F | 6.2 |
Al2O3 | 4.9 |
P2O5 | 10.2 |
Pr2O3 | 2.8 |
SiO2 | 2.1 |
其他 | 4.4 |
表1 稀土精矿催化剂XRF分析结果
Table 1 XRF analysis of rare earth concentrate catalysts
元素 | 含量/% |
---|---|
CeO2 | 28.9 |
CaO | 9.3 |
La2O3 | 17.9 |
Fe2O3 | 3.7 |
Nd2O3 | 9.6 |
F | 6.2 |
Al2O3 | 4.9 |
P2O5 | 10.2 |
Pr2O3 | 2.8 |
SiO2 | 2.1 |
其他 | 4.4 |
φNO | 催化剂填装量/g | 气体总流量/(ml/min) | 恒温时间/min | 反应温度/℃ | |||
---|---|---|---|---|---|---|---|
500×10-6 | 500×10-6 | 3×10-2 | 100×10-6~500×10-6 | 0.2 | 100 | 180 | 300/350 |
表2 催化剂 SCR 抗硫性能测试的反应条件
Table 2 Reaction conditions for testing sulfur resistance of catalyst SCR
φNO | 催化剂填装量/g | 气体总流量/(ml/min) | 恒温时间/min | 反应温度/℃ | |||
---|---|---|---|---|---|---|---|
500×10-6 | 500×10-6 | 3×10-2 | 100×10-6~500×10-6 | 0.2 | 100 | 180 | 300/350 |
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 平均孔径/nm |
---|---|---|---|
测试前催化剂 | 47.228 | 0.037 | 3.049 |
测试后催化剂 | 46.886 | 0.031 | 3.068 |
表3 抗硫测试前后催化剂BET分析结果
Table 3 BET analysis results of catalysts before and after sulfur resistance test
样品 | 比表面积/(m2/g) | 孔体积/(cm3/g) | 平均孔径/nm |
---|---|---|---|
测试前催化剂 | 47.228 | 0.037 | 3.049 |
测试后催化剂 | 46.886 | 0.031 | 3.068 |
1 | Zhang M H, Huang B J, Jiang H X, et al. Research progress in the SO2 resistance of the catalysts for selective catalytic reduction of NOx[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1695-1705. |
2 | 刘建华, 杨晓博, 张琛, 等. Fe2O3对V2O5-WO3/TiO2催化剂表面性质及其性能的影响[J]. 化工学报, 2016, 67(4): 1287-1293. |
Liu J H, Yang X B, Zhang C, et al. Effect of Fe2O3 on surface properties and activities of V2O5-WO3/TiO2 catalysts[J].CIESC Journal, 2016, 67(4): 1287-1293. | |
3 | 郭凤, 余剑, 李长明, 等. 溶胶-凝胶原位合成钒钨钛催化剂及NH3-SCR性能[J]. 化工学报, 2017, 68(10): 3747-3754. |
Guo F, Yu J, Li C M, et al. In situ preparation of mesoporous V2O5-WO3/TiO2 catalyst by sol-gel method and its performance for NH3-SCR reaction[J]. CIESC Journal, 2017, 68(10): 3747-3754. | |
4 | Li J H, Chang H Z, Ma L, et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review[J]. Catalysis Today, 2011, 175(1): 147-156. |
5 | Xiong Z B, Peng B, Zhou F, et al. Magnetic iron-cerium-tungsten mixed oxide pellets prepared through critic acid sol-gel process assisted by microwave irradiation for selective catalytic reduction of NOx with NH3[J]. Powder Technology, 2017, 319(1): 19-25. |
6 | 庄柯, 张亚平, 黄天娇, 等. Ho改性Fe-Mn/TiO2低温SCR脱硝催化剂硫中毒及热还原再生研究[J]. 燃料化学学报, 2017, 45(11): 1356-1364. |
Zhuang K, Zhang Y P, Huang T J, et al. Sulfur-poisoning and thermal reduction regeneration of holmium-modified Fe-Mn/TiO2, catalyst for low-temperature SCR[J]. Journal of Fuel Chemistry and Technology, 2017, 45(11): 1356-1364. | |
7 | Wu B J, Liu X Q, Xiao P. Catalytic performance of MnOx-WO3/TiO2 catalyst for selective catalytic reduction of NOx with NH3 and its tolerance towards SO2[J]. Chemical Research in Chinese Universities, 2009, 25(6): 914-919. |
8 | Kijlstra W S, Biervliet M, Poels E K, et al. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Applied Catalysis B: Environmental, 1998, 16(4): 327-337. |
9 | Jiang B Q, Wu Z B, Liu Y, et al. DRIFT study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2[J]. The Journal of Physical Chemistry C, 2010, 114(11): 4961-4965. |
10 | Wu Z H, Jin R B, Wang H Q, et al. Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature[J]. Catalysis Communications, 2009, 10(6): 935-939. |
11 | Li S H, Huang B C, Yu C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J].Catalysis Communications, 2017, 47(51): 1351-1362. |
12 | 赵栗, 肖睿, 曾德望. V2O5@CeO2核壳微球结构的脱硝催化剂制备及其抗硫性能[J]. 化工学报, 2017, 68(4): 1373-1380. |
Zhao L, Xiao R, Zeng D W. Preparation and SO2-resistance of V2O5@CeO2 core-shell microspheres for SCR deNOx[J]. CIESC Journal, 2017, 68(4): 1373-1380. | |
13 | Sheng Z Y, Ma D R, Zeng D Q, et al. Synthesis of novel MnOx@TiO2 core‐shell nanorod catalyst for low-temperature NH3-selective catalytic reduction of NOx with enhanced SO2 tolerance[J]. Chinese Journal of Catalysis, 2018, 39(4): 821-830. |
14 | Zhao C L, Wu Y X, Liang H L, et al. N-doped graphene and TiO2 supported manganese and cerium oxides on low-temperature selective catalytic reduction of NOx with NH3[J]. Journal of Advanced Ceramics, 2018, 7(3): 1221-1232. |
15 | Wang C, Yu F, Zhu M Y, et al. Highly selective catalytic reduction of NOx by MnOx-CeO2-Al2O3 catalysts prepared by self-propagating high-temperature synthesis[J]. Journal of Environmental Sciences, 2019, 75(1): 124-135. |
16 | Shen B X, Liu T, Zhao N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2010, 22(9): 1447-1454. |
17 | Chang H Z, Li J H, Chen X Y, et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia: enhancement of activity and remarkable resistance to SO2[J]. Catalysis Communications, 2012, 27 (3): 1272-1280. |
18 | Gao F Y, Tang X L, Yi H H, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chemical Engineering Journal, 2017, 317: 20-31. |
19 | Shen B X, Wang Y Y, Wang F M, et al. The effect of Ce-Zr on NH3-SCR activity over MnOx(0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chemical Engineering Journal, 2014, 236: 171-180. |
20 | 金瑞奔. 负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D]. 杭州: 浙江大学, 2010. |
Jin R B. Preparation, reaction mechanism and sulfur resistance of supported Mn-Ce series low temperature SCR denitrification catalysts [D]. Hangzhou: Zhejiang University, 2010. | |
21 | 王龙飞, 张亚平, 郭婉秋, 等.WO3/TiO2-ZrO2脱硝催化剂制备及其NH3活化机理[J].化工学报, 2015, 66(10): 3903-3910. |
Wang L F, Zhang Y P, Guo W Q, et al. Preparation of WO3/TiO2-ZrO2 catalyst for selective catalytic reduction and mechanism of NH3 activation[J]. CIESC Journal, 2015, 66(10): 3903-3910. | |
22 | 汪楷迪, 刘少光, 史文, 等. Cu、Ni元素对FeMnCeOx-WO3/TiO2低温无毒催化剂活性及抗硫性的影响[J].功能材料, 2019, 50(4): 4080-4085+4092. |
Wang K D, Liu S G, Shi W, et al. Effect of activity and SO2 tolerance of Cu, Ni modified FeMnCeOx-WO3/TiO2 poisonless catalysts for SCR of NOx at low temperature[J]. Journal of Functional Materials, 2019, 50(4): 4080-4085+4092. | |
23 | 王坤, 龚志军, 武文斐. 水热法制备稀土基催化剂及其NH3-SCR脱硝性能研究[J].稀有金属与硬质合金, 2018, 46(5): 37-42. |
Wang K, Gong Z J, Wu W F. Hydrothermal preparation of rare earth-based catalysts and study on their NH3-SCR denitration performance[J]. Rare Metals and Cemented Carbides, 2018, 46(05): 37-42. | |
24 | 王凯兴. 稀土精矿协同催化NH3选择性还原NOx的原位红外研究[D].包头: 内蒙古科技大学, 2018. |
Wang K X. In situ DRIFTS study on the selective reduction of NOx by NH3 over rare earth concentrate[D]. Baotou: Inner Mongolia University of Science and Technology, 2018. | |
25 | 高珊. 铈钒锆固体超强酸催化剂的脱硝活性及其抗中毒能力[D]. 杭州: 浙江大学, 2016. |
Gao S. Cerium and vanadium supported on sulfated zirconia as a solid superacid catalyst with enhanced DeNOx activity and poison resistance[D]. Hangzhou: Zhejiang University, 2016. | |
26 | 樊银明. Ce原位引入和负载于Mn/SAPO-34的低温NH3-SCR抗硫抗水性能与分子模拟研究[D]. 广州: 华南理工大学, 2017. |
Fan Y M. Experimental and molecular simulation study on cerium presence in the framework and the surface of Mn/SAPO-34 resistance to SO2 and H2O in NH3-SCR at low temperature[D]. Guangzhou: South China University of Technology, 2017. | |
27 | 罗肖. V2O5-WO3/TiO2催化剂快速脱除NOx活性及抗SO2的实验研究[D]. 北京: 华北电力大学, 2016. |
Luo X. Fast NOx removal and SO2 resistance by V2O5-WO3 /TiO2 catalyst[D]. Beijing: North China Electric Power University, 2016. | |
28 | Zhu Z P, Liu Z Y, Niu H X, et al. Mechanism of SO2 promotion for NO reduction with NH3 over activated carbon-supported vanadium oxide catalyst[J]. Journal of Catalysis, 2001, 197(1): 6-16. |
29 | Chen L, Li J H, Ge M F. DRIFT Study on cerium-tungsten/titiania catalyst for selective catalytic reduction of NOx with NH3[J]. Environmental Science & Technology, 2010, 44(24): 9590-9596. |
30 | Wang K X, Gong Z J, Luo H J, et al. DRIFT study of the adsorption of NH3 and NOx over rare earth concentrate enriched from Bayan Obo tailings[J]. Combustion Science & Technology, 2018, 190(5): 770-783. |
31 | 赵宇峰, 赵博, 禚玉群, 等. SO2对于铁基硫酸盐的NH3选择性还原NO催化活性的影响[J].中国电机工程学报, 2011, 31(23): 27-33. |
Zhao Y F, Zhao B, Zhuo Y Q. Influences of SO2 on the catalytic effect for selective catalytic reduction of NO by NH3 over iron-based sulfates[J]. Proceedings of the CSEE, 2011, 31(23): 27-33. | |
32 | 牟洋, 杨娟, 余剑, 等. 金属硫酸盐与氧化物助剂对SCR脱硝催化剂性能的影响[J]. 化工学报, 2013, 64(9): 3220-3227. |
Mou Y, Yang J, Yu J, et al. Effect of metal sulfate and oxide additives on performance of SCR denitration catalyst[J]. CIESC Journal, 2013, 64(9): 3220-3227. |
[1] | 黄顺进, 张丽, 颜井冲, 王志刚, 雷智平, 李占库, 任世彪, 王知彩, 水恒福. 高碱煤与煤矸石掺烧SO2和NO减排及结渣抑制研究[J]. 化工学报, 2022, 73(12): 5581-5591. |
[2] | 赵丽文, 刘桂莲. 苯加氢制环己烯装置能量系统集成及催化剂再生周期优化[J]. 化工学报, 2022, 73(12): 5494-5503. |
[3] | 邱爽, 肖永厚, 刘建辉, 贺高红. 一步法制备高活性NH3-SCR催化剂Cu-SAPO-34:Si含量的影响[J]. 化工学报, 2021, 72(5): 2578-2585. |
[4] | 尹子骏, 苏胜, 卿梦霞, 赵志刚, 王中辉, 王乐乐, 江龙, 汪一, 胡松, 向军. 一种典型钒钛系SCR催化剂SO3生成特性研究[J]. 化工学报, 2021, 72(5): 2596-2603. |
[5] | 王东亮, 谢江鹏, 周怀荣, 孟文亮, 杨勇, 李德磊. 基于MDEA的烟气SO2捕集过程工艺参数和能量集成分析[J]. 化工学报, 2021, 72(3): 1521-1528. |
[6] | 刘应书,孙宁起,李子宜,杨雄,魏进超,杨本涛,吴倩倩,刘佳欣. 冷凝法回收烟气吸附脱硫解吸气中SO2工艺参数的影响规律研究[J]. 化工学报, 2020, 71(12): 5620-5627. |
[7] | 肖俏欣, 林文俊, 李浩然, 王从敏. 含醚阴离子功能化离子液体高效捕集SO2[J]. 化工学报, 2020, 71(1): 361-367. |
[8] | 李向阳, 李扬, 靳立军, 杨赫, 王德超, 胡浩权. MnOx改性活性炭用于模拟烟气中Hg0的脱除[J]. 化工学报, 2019, 70(8): 3078-3085. |
[9] | 张文静, 吴烨, 蔡天意, 刘道银, 马吉亮, 梁财, 陈晓平. 胺基CO2固体吸附剂脱碳特性及SO2的影响[J]. 化工学报, 2018, 69(4): 1586-1594. |
[10] | 李春峰, 段钰锋, 汤红健, 朱纯, 郑逸武, 韦红旗. CaO对汞的选择性吸附及SO2毒化特性[J]. 化工学报, 2017, 68(9): 3565-3572. |
[11] | 葛亚昕, 张光义, 崔丽杰, 高士秋. 高含水菌渣流化床燃烧NOx、SO2排放特性[J]. 化工学报, 2017, 68(8): 3250-3257. |
[12] | 吕晨, 刘小伟, 郭俊哲, 张鹏辉, 徐明厚. O2/H2O燃烧方式下石灰石的间接硫化反应特性[J]. 化工学报, 2017, 68(1): 353-359. |
[13] | 陈莹, 王建英, 刘超, 姜海超, 刘玉敏, 胡永琪. PEG基功能化离子液体的脱硫性能[J]. 化工学报, 2015, 66(S1): 332-337. |
[14] | 王晨星, 任树行, 侯玉翠, 王一鸣, 田士东, 吴卫泽. 离子液体水溶液吸收模拟烟气中SO2[J]. 化工学报, 2015, 66(S1): 222-227. |
[15] | 王晨星, 任树行, 侯玉翠, 田士东, 吴卫泽. 乙醇胺乳酸盐离子液体吸收SO2过程中的物理化学性质[J]. 化工学报, 2015, 66(S1): 17-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||