化工学报 ›› 2019, Vol. 70 ›› Issue (8): 3078-3085.DOI: 10.11949/0438-1157.20190323
收稿日期:
2019-04-01
修回日期:
2019-05-23
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
李扬,胡浩权
作者简介:
李向阳(1991—),男,硕士研究生,<email>lixiangyang@ mail.dlut.edu.cn</email>
基金资助:
Xiangyang LI(),Yang LI(),Lijun JIN,He YANG,Dechao WANG,Haoquan HU()
Received:
2019-04-01
Revised:
2019-05-23
Online:
2019-08-05
Published:
2019-08-05
Contact:
Yang LI,Haoquan HU
摘要:
采用浸渍法制备了MnOx改性活性炭(MnOx/AC),用于模拟煤燃烧烟气中的元素态汞的脱除。实验研究了吸附剂的Mn负载量、吸附温度和烟气组分对所制备的改性活性炭的脱汞性能的影响,以及SO2对活性炭脱汞的抑制作用机理。研究结果表明,当模拟烟气中含有5%(体积)O2,Mn负载量为14%(质量),吸附温度为150℃时,改性活性炭的平均脱汞效率为97.0%(3 h)。模拟烟气中少量的O2和微量的HCl、NO均对汞的脱除起促进作用,而微量的SO2则对汞的脱除有抑制作用。通过吸附后的MnOx改性活性炭的TG/DTG、XPS和Hg-TPD分析,推测SO2对改性活性炭脱汞的抑制作用是由于其消耗MnOx中的晶格氧,形成的硫酸盐占据了14Mn/AC表面上的活性位点所致。模拟烟气中微量的NO可以有效降低SO2对脱汞的抑制作用。
中图分类号:
李向阳, 李扬, 靳立军, 杨赫, 王德超, 胡浩权. MnOx改性活性炭用于模拟烟气中Hg0的脱除[J]. 化工学报, 2019, 70(8): 3078-3085.
Xiangyang LI, Yang LI, Lijun JIN, He YANG, Dechao WANG, Haoquan HU. Removal of Hg0 from simulated flue gas by MnOx modified activated carbon[J]. CIESC Journal, 2019, 70(8): 3078-3085.
工业分析/%(mass) | 元素分析/%(mass, daf) | ||||||
---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | C | H | N | S | O① |
0.11 | 10.37 | 10.23 | 87.91 | 4.04 | 1.42 | 0.66 | 5.97 |
表1 晋城无烟煤工业分析和元素分析
Table 1 Proximate and ultimate analysis of Jincheng anthracite
工业分析/%(mass) | 元素分析/%(mass, daf) | ||||||
---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | C | H | N | S | O① |
0.11 | 10.37 | 10.23 | 87.91 | 4.04 | 1.42 | 0.66 | 5.97 |
样品 | 比表面积/ (m2/g) | 孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|
AC | 1983 | 0.96 | 1.92 |
8Mn/AC | 1664 | 0.81 | 1.97 |
10Mn/AC | 1598 | 0.79 | 1.98 |
12Mn/AC | 1531 | 0.76 | 2.01 |
14Mn/AC | 1481 | 0.73 | 2.04 |
16Mn/AC | 1397 | 0.71 | 2.03 |
20Mn/AC | 1250 | 0.64 | 2.01 |
24Mn/AC | 1109 | 0.56 | 2.02 |
表2 MnOx/AC的比表面积及孔结构Table 2 Specific surface area and pore structure parameters of MnOx/AC
样品 | 比表面积/ (m2/g) | 孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|
AC | 1983 | 0.96 | 1.92 |
8Mn/AC | 1664 | 0.81 | 1.97 |
10Mn/AC | 1598 | 0.79 | 1.98 |
12Mn/AC | 1531 | 0.76 | 2.01 |
14Mn/AC | 1481 | 0.73 | 2.04 |
16Mn/AC | 1397 | 0.71 | 2.03 |
20Mn/AC | 1250 | 0.64 | 2.01 |
24Mn/AC | 1109 | 0.56 | 2.02 |
样品 | Oα/% | Oβ/% | Oγ/% |
---|---|---|---|
14Mn/AC | 32.3 | 61.0 | 6.7 |
14Mn/AC-S | 32.0 | 61.4 | 6.6 |
14Mn/AC-S(W O2) | 29.6 | 63.9 | 6.5 |
14Mn/AC-S(SO2) | 20.2 | 73.2 | 6.6 |
表3 14Mn/AC及在不同气氛下吸附后表面氧物种的含量
Table 3 Concentration of surface oxygen in 14Mn/AC and spent samples in different atmospheres
样品 | Oα/% | Oβ/% | Oγ/% |
---|---|---|---|
14Mn/AC | 32.3 | 61.0 | 6.7 |
14Mn/AC-S | 32.0 | 61.4 | 6.6 |
14Mn/AC-S(W O2) | 29.6 | 63.9 | 6.5 |
14Mn/AC-S(SO2) | 20.2 | 73.2 | 6.6 |
1 | HuY, ChengH F. Control of mercury emissions from stationary coal combustion sources in China: current status and recommendations[J]. Environmental Pollution, 2016, 218: 1209-1221. |
2 | BasuN, HorvatM, EversD C, et al. A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018[J]. Environmental Health Perspectives, 2018, 126(10): 106001. |
3 | ZhaoY C, YangJ P, MaS M, et al. Emission controls of mercury and other trace elements during coal combustion in China: a review[J]. International Geology Review, 2018, 60(5/6): 638-670. |
4 | XuW, HussainA, LiuY X. A review on modification methods of adsorbents for elemental mercury from flue gas[J]. Chemical Engineering Journal, 2018, 346: 692-711. |
5 | CariccioV L, SamàA, BramantiP, et al. Mercury involvement in neuronal damage and in neurodegenerative diseases[J]. Biological Trace Element Research, 2019, 187(2): 341-356. |
6 | ReddyB M, DurgasriN, KumarT V, et al. Abatement of gas-phase mercury—recent developments[J]. Catalysis Reviews-Science and Engineering, 2012, 54(3): 344-398. |
7 | LiY N, DuanY F, WangH, et al. Effects of acidic gases on mercury adsorption by activated carbon in simulated oxy-fuel combustion flue gas[J]. Energy & Fuels, 2017, 31(9): 9745-9751. |
8 | 胡长兴, 周劲松, 骆仲泱, 等. 烟气脱汞过程中活性炭喷射量的影响因素[J]. 化工学报, 2005, 56(11): 2172-2177. |
HuC X, ZhouJ S, LuoZ Y, et al. Factors affecting amount of activated carbon injection for flue gas mercury control[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(11): 2172-2177. | |
9 | WuJ, ZhaoZ, HuangT F, et al. Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst[J]. Catalysis Communications, 2017, 93: 62-66. |
10 | YangW, LiuY X, WangQ, et al. Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation[J]. Chemical Engineering Journal, 2017, 326: 169-181. |
11 | MeiZ J, ShenZ M, ZhaoQ J, et al. Removal and recovery of gas-phase element mercury by metal oxide-loaded activated carbon[J]. Journal of Hazardous Materials, 2008, 152(2): 721-729. |
12 | ZhuY C, HanX J, HuangZ G, et al. Superior activity of CeO2 modified V2O5/AC catalyst for mercury removal at low temperature[J]. Chemical Engineering Journal, 2018, 337: 741-749. |
13 | XuH M, MaY P, ZhaoS J, et al. Enhancement of Ce1-xSnxO2 support in LaMnO3 for the catalytic oxidation and adsorption of elemental mercury[J]. RSC Advances, 2016, 6(68): 63559-63567. |
14 | GaoL, LiC T, LuP, et al. Simultaneous removal of Hg0 and NO from simulated flue gas over columnar activated coke granules loaded with La2O3-CeO2 at low temperature[J]. Fuel, 2018, 215: 30-39. |
15 | YangJ P, ZhaoY C, LiangS F, et al. Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe3-xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas[J]. Chemical Engineering Journal, 2018, 334: 216-224. |
16 | LiuD J, ZhouW G, WuJ. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017, 194: 115-122. |
17 | WuY H, XuW Q, YangY, et al. Support effect of Mn-based catalysts for gaseous elemental mercury oxidation and adsorption[J]. Catalysis Science & Technology, 2018, 8(1): 297-306. |
18 | DuW, YinL B, ZhuoY Q, et al. Performance of CuOx-neutral Al2O3 sorbents on mercury removal from simulated coal combustion flue gas[J]. Fuel Processing Technology, 2015, 131: 403-408. |
19 | LiH H, WangY, WangS K, et al. Removal of elemental mercury in flue gas at lower temperatures over Mn-Ce based materials prepared by co-precipitation[J]. Fuel, 2017, 208: 576-586. |
20 | WuS J, UddinM A, NaganoS, et al. Fundamental study on decomposition characteristics of mercury compounds over solid powder by temperature-programmed decomposition desorption mass spectrometry[J]. Energy & Fuels, 2011, 25(1): 144-153. |
21 | RumayorM, Lopez-AntonM A, Diaz-SomoanoM, et al. A comparison of devices using thermal desorption for mercury speciation in solids[J]. Talanta, 2016, 150: 272-277. |
22 | GuoY Y, LiY R, ZhuT Y, et al. Investigation of SO2 and NO adsorption species on activated carbon and the mechanism of NO promotion effect on SO2[J]. Fuel, 2015, 143: 536-542. |
23 | TongL, XuW Q, ZhouX, et al. Effects of multi-component flue gases on Hg0 removal over HNO3-modified activated carbon[J]. Energy & Fuels, 2015, 29(8): 5231-5236. |
24 | ZhangX, ShenB X, ShenF, et al. The behavior of the manganese-cerium loaded metal-organic framework in elemental mercury and NO removal from flue gas[J]. Chemical Engineering Journal, 2017, 326: 551-560. |
25 | XuW Q, TongL, QiH, et al. Effect of flue gas components on Hg0 oxidation over Fe/HZSM-5 catalyst[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 146-152. |
26 | XieY, LiC T, ZhaoL K, et al. Experimental study on Hg0 removal from flue gas over columnar MnOx-CeO2/activated coke[J]. Applied Surface Science, 2015, 333: 59-67. |
27 | ZhangS B, ZhaoY C, YangJ P, et al. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chemical Engineering Journal, 2018, 348: 618-629. |
28 | ShiC, ChangH, WangC, et al. Improved activity and H2O resistance of Cu-modified MnO2 catalysts for NO oxidation[J]. Industrial & Engineering Chemistry Research, 2018, 57(3): 920-926. |
29 | ZhouZ, LiuX, ZhaoB, et al. Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature[J]. Chemical Engineering Journal, 2016, 288: 701-710. |
30 | AnD H, ZhangX Y, ChengX X, et al. Performance of Mn-Fe-Ce/GO-x for catalytic oxidation of Hg0 and selective catalytic reduction of NOx in the same temperature range[J]. Catalysis, 2018, 8(9): 339. |
31 | ZhangP, PanW G, GuoR T, et al. A study on simultaneous catalytic ozonation of Hg0 and NO using Mn-TiO2 catalyst at low flue gas temperatures[J]. Chemical Papers, 2018, 72(6): 1347-1361. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[4] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[8] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[11] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[12] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[13] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[14] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[15] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||