化工学报 ›› 2019, Vol. 70 ›› Issue (12): 4556-4564.DOI: 10.11949/0438-1157.20190523
收稿日期:
2019-05-19
修回日期:
2019-09-26
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
车得福
作者简介:
何洋(1994—),男,硕士研究生,Yang HE(),Limin WANG,Chunli TANG,Defu CHE()
Received:
2019-05-19
Revised:
2019-09-26
Online:
2019-12-05
Published:
2019-12-05
Contact:
Defu CHE
摘要:
通过数值计算对湿工况下的H型和圆型翅片管换热器通道内充分发展段的对流冷凝传热特性进行模拟研究。计算采用压力与速度耦合的SIMPLER算法,湿烟气流速范围为1~5 m/s,水蒸气质量分数范围为5%~13%。讨论了不同入口速度、水蒸气质量分数对H型翅片管和圆型翅片管传热传质系数、传热量、冷凝水流量和翅片效率的影响,并进行定量比较分析。计算结果表明,H型翅片管的传热能力强于圆型翅片管,但冷凝生成量较圆型翅片管小,同时H型翅片管的总翅片效率和潜热翅片效率小于圆型翅片管。
中图分类号:
何洋, 王利民, 唐春丽, 车得福. H型翅片管湿烟气对流冷凝传热的数值模拟研究[J]. 化工学报, 2019, 70(12): 4556-4564.
Yang HE, Limin WANG, Chunli TANG, Defu CHE. Numerical simulation of convection condensation heat transfer of H-fixed tubes with wet flue gas[J]. CIESC Journal, 2019, 70(12): 4556-4564.
参数 | H型翅片 | 圆型翅片 |
---|---|---|
管外径D/ mm | 38 | 38 |
管壁厚度t/ mm | 3 | 3 |
翅片厚度δ/ mm | 3 | 3 |
翅片节距F P/ mm | 14.5 | 14.5 |
翅片高度h/ mm | — | 13.26 |
翅片长度H/ mm | 89 | — |
翅片宽度W/ mm | 95 | — |
翅片间隙G/ mm | 8 | — |
纵向管间距P 1/ mm | 180 | 180 |
横向管间距P 2/ mm | 120 | 120 |
入口温度T in/ K | 370 | 370 |
管壁温度T tube/ K | 300 | 300 |
入口速度v in/(m·s-1) | 1~5 | 1~5 |
入口水蒸气质量分数ω/ % | 5~13 | 5~13 |
表1 翅片管的几何尺寸和入口参数
Table 1 Finned tube geometry dimensions and inlet parameters
参数 | H型翅片 | 圆型翅片 |
---|---|---|
管外径D/ mm | 38 | 38 |
管壁厚度t/ mm | 3 | 3 |
翅片厚度δ/ mm | 3 | 3 |
翅片节距F P/ mm | 14.5 | 14.5 |
翅片高度h/ mm | — | 13.26 |
翅片长度H/ mm | 89 | — |
翅片宽度W/ mm | 95 | — |
翅片间隙G/ mm | 8 | — |
纵向管间距P 1/ mm | 180 | 180 |
横向管间距P 2/ mm | 120 | 120 |
入口温度T in/ K | 370 | 370 |
管壁温度T tube/ K | 300 | 300 |
入口速度v in/(m·s-1) | 1~5 | 1~5 |
入口水蒸气质量分数ω/ % | 5~13 | 5~13 |
1 | Samuelson C , Bilirgen H , Jeong K , et al . Recovery of water from boiler flue gas final technical report[R]. 20 Fossil-Fueled Power Plants, 2008. |
2 | Reimers A S . Low temperature heat and water recovery from supercritical coal plant flue gas[D]. Texas: The University of Texas at Austin, 2015. |
3 | 张节庆, 郑剑飞 . 蝶形肋片省煤器在多灰烟气中的应用[J]. 锅炉技术, 2003, 34(5): 30-33. |
Zhang J Q , Zheng J F . Application of butterfly-shaped rib economizer in multi-ash flue gas[J]. Boiler Technology, 2003, 34(5): 30-33. | |
4 | 王为术, 崔强, 田苗, 等 . 低压省煤器H型鳍片管优化传热数值研究[J]. 河北工程大学学报(自然科学版), 2016, 33(2): 99-102. |
Wang W S , Cui Q , Tian M , et al . Numerical study on optimal heat transfer of H-type finned tubes for low pressure economizer[J]. Journal of Hebei University of Engineering(Natural Science Edition), 2016, 33(2): 99-102. | |
5 | 刘彦丰, 付晓俊 . H型鳍片管的鳍片温度工况模拟分析[J]. 华北电力大学学报(自然科学版), 2017, 44(4): 100-104. |
Liu Y F , Fu X J . Simulation analysis of fin temperature conditions of H-type finned tubes[J]. Journal of North China Electric Power University (Natural Science Edition), 2017, 44(4): 100-104. | |
6 | 孙钟平, 吴新, 王亚欧 . H型鳍片管束传热及流阻特性的数值模拟[J]. 动力工程学报, 2014, 34(5): 382-389. |
Sun Z P , Wu X , Wang Y O . Numerical simulation of heat transfer and flow resistance characteristics of H-type finned tube bundles[J]. Journal of Power Engineering, 2014, 34(5): 382-389. | |
7 | 吴新, 商宇薇, 王军龙, 等 . H型鳍片管束传热特性实验研究[J]. 东南大学学报(自然科学版), 2013, 43(1): 88-93. |
Wu X , Shang Y W , Wang J L , et al . Experimental study on heat transfer characteristics of H-type fin bundles[J]. Journal of Southeast University(Natural Science), 2013, 43(1): 88-93. | |
8 | 陆子龙, 商宇薇, 吴新 . H型鳍片管省煤器传热与阻力特性试验研究[J]. 能源研究与利用, 2013, 43(1): 27-30. |
Lu Z L , Shang Y W , Wu X . Experimental study on heat transfer and resistance characteristics of H-fin tube economizer[J]. Energy Research and Utilization, 2013, 43(1): 27-30. | |
9 | 杨大哲, 曹静 . H型鳍片管传热流动特性试验及机理分析[C]//中国电机工程学会年会. 2011: 1-4. |
Yang D Z , Cao J . Heat transfer and flow characteristics test and mechanism analysis of H-type finned tubes[C]//Proceedings of the Annual Meeting of China Electrical Engineering Society. 2011: 1-4. | |
10 | 陈涛 . 应用于低压省煤器的H型鳍片管传热分析[J]. 科技广场, 2012, 11(5): 116-119. |
Chen T . Heat transfer analysis of H-type fin tubes applied to low pressure economizer[J]. Science and Technology Plaza, 2012, 11(5): 116-119. | |
11 | 张知翔, 王云刚, 赵钦新 . H型鳍片管传热特性的数值模拟及验证[J]. 动力工程学报, 2010, 30(5): 368-371, 377. |
Zhang Z X , Wang Y G , Zhao Q X . Numerical simulation and verification of heat transfer characteristics of H-type finned tubes[J]. Journal of Power Engineering, 2010, 30(5): 368-371, 377. | |
12 | Ay H , Yeh J N , Jang J Y . Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography[J]. International Journal of Heat and Mass Transfer, 2002, 45(20): 4069-4078. |
13 | Heng C , Yun G W , Qin X Z , et al . Experimental investigation of heat transfer and pressure drop characteristics of H-type finned tube banks[J]. Energies, 2014, 7(11): 7094-7104. |
14 | He Y L , Tao W Q , Jin Y , et al . Parametric study and field synergy principle analysis of H-type finned tube bank with 10 rows[J]. International Journal of Heat and Mass Transfer, 2013, 60(1): 241-251. |
15 | Wang Z J , Zeng Z X , Xu Y H . Study on heat transfer and resistance characteristics of H-type finned tube[J]. Advanced Materials Research, 2013, 2694(1611): 1817-1822. |
16 | 宋景慧, 宋杰 . H型翅片管传热与阻力特性数值模拟和场协同原理分析[C]//中国科协年会. 2017. |
Song J H , Song J . Numerical simulation of heat transfer and resistance characteristics of H-shaped finned tubes and field synergy principle [C]//Chinese Association of Science and Technology Annual Conference Proceedings. 2017. | |
17 | Jin Y , Yu Z Q , Tang G H , et al . Parametric study and multiple correlations of an H-type finned tube bank in a fully developed region[J]. Numerical Heat Transfer, Part A: Applications, 2016, 70(1): 64-78. |
18 | Zhou W , Tao W , Li M , et al . 3D numerical simulation of heat and mass transfer of fin-and-tube heat exchanger under dehumidifying conditions[J]. International Journal of Heat and Mass Transfer, 2018, 127(Pt.C): 597-610. |
19 | 谢公南, 王秋旺, 罗来勤 . 除湿条件下波纹通道内对流传热传质的数值研究[J]. 太阳能学报, 2007, 28(6): 598-603. |
Xie G N , Wang Q W , Luo L Q . Numerical study of convective heat and mass transfer in corrugated channels under dehumidification conditions[J]. Journal of Solar Energy, 2007, 28(6): 598-603. | |
20 | 房达 . 空气-水蒸气混合气体凝结与对流换热特性的数值模拟[D]. 济南: 山东大学, 2014. |
Fang D . Numerical simulation of condensation and convective heat transfer characteristics of air-steam mixture [D]. Jinan: Shandong University, 2014. | |
21 | 任能, 谷波 . 湿工况下平翅片传热传质实验与数值模拟[J]. 化工学报, 2007, 58(7): 1626-1631. |
Ren N , Gu B . Experimental and numerical simulation of heat and mass transfer in flat fins under wet conditions[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1626-1631. | |
22 | 宿吉强, 王辉, 孙中宁, 等 . 含空气蒸汽冷凝传热特性数值模拟[J]. 化工学报, 2014, 65(9): 3425-3433. |
Su J Q , Wang H , Sun Z N , et al . Numerical simulation of condensation heat transfer characteristics of air containing steam[J]. CIESC Journal, 2014, 65(9): 3425-3433. | |
23 | 唐桂华, 庄正宁, 王建伟, 等 . 不凝气体存在时水平单管外膜状凝结换热的数值研究[J]. 西安交通大学学报, 2000, 34(11): 31-35. |
Tang G H , Zhuang Z N , Wang J W , et al . Numerical study of horizontal single-tube outer membrane condensation heat transfer in the presence of non-condensable gas[J]. Journal of Xi an Jiaotong University, 2000, 34(11): 31-35. | |
24 | 刘泉, 杨渐志, 顾海林, 等 . 不凝性气体对竖直平板对流冷凝的影响[J]. 中国科学技术大学学报, 2015, 71(5): 397-403. |
Liu Q , Yang J Z , Gu H L , et al . Effect of non-condensable gases on vertical plate convection condensation[J]. Journal of University of Science and Technology of China, 2015, 71(5): 397-403. | |
25 | Di D V , Caruso G , Naviglio A . Condensation heat transfer coefficient with noncondensable gases inside near horizontal tubes[J]. Desalination: The International Journal on the Science and Technology of Desalting and Water Purification, 2013, 309(25): 247-253. |
26 | Jeong K . Condensation of water vapor and sulfuric acid in boiler flue gas[D]. USA: Lehigh University, 2009. |
27 | Amano R S . A numerical study of laminar and turbulent heat transfer in a periodically corrugated wall channel[J]. Journal of Heat Transfer, 1985, 107(3): 564-569. |
28 | Amano R S , Bagherlee A , Smith R J , et al . Turbulent heat transfer in corrugated-wall channels with and without fins[J]. Journal of Heat Transfer, 1987, 109(1): 62-69. |
29 | 陶文铨 . 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001. |
Tao W Q . Numerical Heat Transfer[M]. 2nd ed. Xi an: Xi an Jiaotong University Press, 2001. | |
30 | 杨世铭, 陶文铨 . 传热学[M]. 4版. 北京: 高等教育出版社, 2006. |
Yang S M , Tao W Q . Heat Transfer[M]. 4th ed. Beijing: Higher Education Press, 2006. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[3] | 王兵兵, 王超, 徐志明. 圆筒电极抑制换热表面CaCO3污垢沉积特性研究[J]. 化工学报, 2022, 73(2): 634-642. |
[4] | 张舒蕾, 李冰杰, 蒋健, 董新宇, 刘璐. 凸面恒温基底上固着液滴蒸发特性研究[J]. 化工学报, 2022, 73(12): 5537-5546. |
[5] | 刘坐东, 李斯琪, 邢维维, 徐志明. 板式换热器Ni-P-TiO2复合纳米镀层微生物污垢特性[J]. 化工学报, 2020, 71(8): 3535-3544. |
[6] | 詹飞龙, 丁国良, 庄大伟, 张浩, 武滔, 叶向阳. 析湿工况下翅片管式换热器表面粉尘沉积过程的数值模型[J]. 化工学报, 2020, 71(5): 1986-1994. |
[7] | 彭冬根, 徐少华. 蒸发冷却条件下管内LiCl和CaCl2溶液降膜除湿性能对比[J]. 化工学报, 2020, 71(4): 1554-1561. |
[8] | 张毅,张冠敏,冷学礼,屈晓航,田茂诚. 无霜空气源热泵技术研究进展[J]. 化工学报, 2020, 71(12): 5400-5419. |
[9] | 丛健,高蓬辉,张东海,周晋鹏,张正函. 超声波对液滴冻结状态及传热的影响[J]. 化工学报, 2020, 71(11): 5117-5128. |
[10] | 李钰冰, 杨茉, 陆廷康, 戴正华. 具有质热源的方腔内对流传热传质及其非线性特性[J]. 化工学报, 2019, 70(S2): 130-137. |
[11] | 张斌, 周孑民, 李茂. 双层配碳烧结过程的传热传质分析[J]. 化工学报, 2017, 68(5): 1811-1822. |
[12] | 牛利娇, 王维, 潘思麒, 张大为, 陈国华. 具有预制孔隙多孔介质冷冻干燥的多相传递模型[J]. 化工学报, 2017, 68(5): 1833-1844. |
[13] | 李美军, 路源, 张士杰, 肖云汉. 水平管降膜吸收局部传热传质特性的数值模拟[J]. 化工学报, 2017, 68(4): 1364-1372. |
[14] | 涂耀东, 葛天舒, 王如竹. 吸附除湿换热:弱关联热质耦合传递过程[J]. 化工学报, 2016, 67(S1): 97-102. |
[15] | 蔡骥驰, 王瑞祥, 徐荣吉, 张一灏, 丁思源. SDBS对铜-水脉动热管启动及传热性能影响[J]. 化工学报, 2016, 67(5): 1852-1857. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||