化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4487-4495.DOI: 10.11949/0438-1157.20210245
收稿日期:
2021-02-08
修回日期:
2021-06-12
出版日期:
2021-09-05
发布日期:
2021-09-05
通讯作者:
苗政
作者简介:
李子航(1996—),男,硕士研究生,基金资助:
Zihang LI1(),Zhanbo WANG1,Zheng MIAO1,2(),Xianbing JI1,2
Received:
2021-02-08
Revised:
2021-06-12
Online:
2021-09-05
Published:
2021-09-05
Contact:
Zheng MIAO
摘要:
针对开口热源与闭口热源两种热源类型,选取423.15和463.15 K两种热源温度,模拟分析采用非共沸混合工质亚临界有机朗肯循环(ORC)热力学及热经济性特性。四种热经济性指标[平均化发电成本(LEC)、单位净输出功换热器面积(APR)、单位时间成本(Z)以及净输出功指标(NPI)]结果具有一致性,具有相同的抛物线形变化趋势。随着选取工质临界温度的升高,各热经济性指标发生规律性变化,其中由热力学筛选准则筛选的工质具有较高热经济性能,表明热力学筛选准则在热经济性方面同样具有较高的适用性。
中图分类号:
李子航, 王占博, 苗政, 纪献兵. 亚临界有机朗肯循环系统工质筛选及热经济性分析[J]. 化工学报, 2021, 72(9): 4487-4495.
Zihang LI, Zhanbo WANG, Zheng MIAO, Xianbing JI. Working fluid selection and thermo-economic analysis of sub-critical organic Rankine cycle[J]. CIESC Journal, 2021, 72(9): 4487-4495.
工质名称 | 临界温度/K | 临界压力/MPa |
---|---|---|
propane/isobutane | 369.89~407.81 | 3.63~4.33 |
propane/butane | 369.89~425.13 | 3.8~4.38 |
isobutane/isopentane | 407.81~460.35 | 3.38~3.75 |
isobutane/pentane | 407.81~469.7 | 3.37~3.82 |
butane/isopentane | 425.13~460.35 | 3.38~3.8 |
butane/pentane | 425.13~469.7 | 3.37~3.81 |
isopentane/hexane | 460.35~507.82 | 3.03~3.41 |
pentane/hexane | 469.7~507.82 | 3.03~3.37 |
hexane/heptane | 507.82~540.13 | 2.74~3.03 |
heptane/octane | 540.13~569.32 | 2.5~2.74 |
octane/nonane | 569.32~594.55 | 2.28~2.5 |
R142b-R245fa | 410.26~427.16 | 3.65~4.06 |
R245fa-R123 | 427.16~456.83 | 3.65~3.66 |
R123-R113 | 456.83~487.21 | 3.39~3.66 |
R113-MM | 487.21~518.7 | 1.94~3.39 |
表1 烷烃工质基本参数(质量分数1~0变化)
Table 1 Fundamental parameters of alkane mixtures
工质名称 | 临界温度/K | 临界压力/MPa |
---|---|---|
propane/isobutane | 369.89~407.81 | 3.63~4.33 |
propane/butane | 369.89~425.13 | 3.8~4.38 |
isobutane/isopentane | 407.81~460.35 | 3.38~3.75 |
isobutane/pentane | 407.81~469.7 | 3.37~3.82 |
butane/isopentane | 425.13~460.35 | 3.38~3.8 |
butane/pentane | 425.13~469.7 | 3.37~3.81 |
isopentane/hexane | 460.35~507.82 | 3.03~3.41 |
pentane/hexane | 469.7~507.82 | 3.03~3.37 |
hexane/heptane | 507.82~540.13 | 2.74~3.03 |
heptane/octane | 540.13~569.32 | 2.5~2.74 |
octane/nonane | 569.32~594.55 | 2.28~2.5 |
R142b-R245fa | 410.26~427.16 | 3.65~4.06 |
R245fa-R123 | 427.16~456.83 | 3.65~3.66 |
R123-R113 | 456.83~487.21 | 3.39~3.66 |
R113-MM | 487.21~518.7 | 1.94~3.39 |
1 | Rahbar K, Mahmoud S, Al-Dadah R K, et al. Review of organic Rankine cycle for small-scale applications[J]. Energy Conversion and Management, 2017, 134: 135-155. |
2 | Roumpedakis T C, Loumpardis G, Monokrousou E, et al. Exergetic and economic analysis of a solar driven small scale ORC[J]. Renewable Energy, 2020, 157: 1008-1024. |
3 | Emadi M A, Chitgar N, Oyewunmi O A, et al. Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery[J]. Applied Energy, 2020, 261: 114384. |
4 | Cao Y, Mihardjo L W W, Dahari M, et al. Waste heat from a biomass fueled gas turbine for power generation via an ORC or compressor inlet cooling via an absorption refrigeration cycle: a thermoeconomic comparison[J]. Applied Thermal Engineering, 2021, 182: 116117. |
5 | Braimakis K, Karellas S. Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities[J]. Energy, 2017, 121: 570-598. |
6 | Feng Y Q, Hung T, Greg K, et al. Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery[J]. Energy Conversion and Management, 2015, 106: 859-872. |
7 | 刘杰, 陈江平, 祁照岗. 低温有机朗肯循环的热力学分析[J]. 化工学报, 2010, 61(S2): 9-14. |
Liu J, Chen J P, Qi Z G. Thermodynamic analysis of low temperature organic Rankine cycle[J]. CIESC Journal, 2010, 61(S2): 9-14. | |
8 | Cayer E, Galanis N, Nesreddine H. Parametric study and optimization of a transcritical power cycle using a low temperature source[J]. Applied Energy, 2010, 87(4): 1349-1357. |
9 | Aljundi I H. Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle[J]. Renewable Energy, 2011, 36(4): 1196-1202. |
10 | Meinel D, Wieland C, Spliethoff H. Effect and comparison of different working fluids on a two-stage organic Rankine cycle (ORC) concept[J]. Applied Thermal Enginerring, 2014, 63(1): 246-253. |
11 | Edrisi B H, Michaelides E E. Effect of the working fluid on the optimum work of binary-flashing geothermal power plants[J]. Energy, 2013, 50: 389-394. |
12 | 曹宇, 王治红, 马宁, 等. 超临界二氧化碳布雷顿/有机朗肯循环联合系统的热力学特性[J]. 热能动力工程, 2020, 35(4): 9-15, 23. |
Cao Y, Wang Z H, Ma N, et al. Thermodynamic properties of supercritical CO2 brayton/organic Rankine cycle combined system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 9-15, 23. | |
13 | Tian H, Chang L W, Gao Y Y, et al. Thermo-economic analysis of zeotropic mixtures based on siloxanes for engine waste heat recovery using a dual-loop organic Rankine cycle (DORC)[J]. Energy Conversion and Management, 2017, 136: 11-26. |
14 | Mago P J, Chamra L M, Srinivasan K, et al. An examination of regenerative organic Rankine cycles using dry fluids[J]. Applied Thermal Engineering, 2008, 28(8/9): 998-1007. |
15 | Borsukiewicz-Gozdur A, Nowak W. Comparative analysis of natural and synthetic refrigerants in application to low temperature Clausius-Rankine cycle[J]. Energy, 2007, 32(4): 344-352. |
16 | 韩中合, 梅中恺, 李鹏. 中温有机朗肯循环多目标优化及工质筛选[J]. 太阳能学报, 2019, 40(10): 2739-2747. |
Han Z H, Mei Z K, Li P. Multi-objective optimization and working fluid selection for medium temperature organic Rankine cycle[J]. Acta Energiae Solaris Sinica, 2019, 40(10): 2739-2747. | |
17 | 韩中合, 梅中恺, 李鹏. 有机朗肯循环蒸发器多目标优化设计及工质筛选[J]. 动力工程学报, 2018, 38(11): 934-940. |
Han Z H, Mei Z K, Li P. Multi-objective optimization design of an evaporator for organic Rankine cycle and the working fluid selection[J]. Journal of Chinese Society of Power Engineering, 2018, 38(11): 934-940. | |
18 | 张大海, 魏新利, 孟祥睿, 等. 低温余热发电有机朗肯循环工质选择[J]. 广东化工, 2011, 38(9):152-153, 159. |
Zhang D H, Wei X L, Meng X R, et al. The fluid selection of ORC power system for energy recovery[J]. Guangdong Chemical Industry, 2011, 38(9): 152-153, 159. | |
19 | 陈超男, 罗向龙, 杨智, 等. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381. |
Chen C N, Luo X L, Yang Z, et al. Thermo-economic modelling and optimization of a zeotropic organic Rankine cycle with composition adjustment[J]. CIESC Journal, 2020, 71(5): 2373-2381. | |
20 | 高宏伟, 袁鹏飞, 张超, 等. 亚临界有机朗肯循环发电系统热经济性分析[J]. 天津理工大学学报, 2020, 36(1): 31-35, 59. |
Gao H W, Yuan P F, Zhang C, et al. Thermal-economic analysis of the subcritical organic Rankine cycle power generation system[J]. Journal of Tianjin University of Technology, 2020, 36(1): 31-35, 59. | |
21 | Miao Z, Zhang K, Wang M X, et al. Thermodynamic selection criteria of zeotropic mixtures for subcritical organic Rankine cycle[J]. Energy, 2019, 167:484-497. |
22 | Miao Z, Li Z H, Zhang K, et al. Selection criteria of zeotropic mixtures for subcritical organic Rankine cycle based on thermodynamic and thermo-economic analysis[J]. Applied Thermal Engineering, 2020, 180: 115837. |
23 | Xi H, Li M J, He Y L, et al. Economical evaluation and optimization of organic Rankine cycle with mixture working fluids using R245fa as flame retardant[J]. Applied Thermal Engineering, 2017, 113: 1056-1070. |
24 | Heberle F, Brüggemann D. Thermo-economic evaluation of organic Rankine cycles for geothermal power generation using zeotropic mixtures[J]. Energies, 2015, 8(3): 2097-2124. |
25 | Yang M H. Payback period investigation of the organic Rankine cycle with mixed working fluids to recover waste heat from the exhaust gas of a large marine diesel engine[J]. Energy Conversion and Management, 2018, 162:189-202. |
26 | Fang Y W, Yang F B, Zhang H G. Comparative analysis and multi-objective optimization of organic Rankine cycle (ORC) using pure working fluids and their zeotropic mixtures for diesel engine waste heat recovery[J]. Applied Thermal Engineering, 2019, 157: 113704. |
27 | Tian Z, Zeng W J, Gu B, et al. Energy, exergy, and economic (3E) analysis of an organic Rankine cycle using zeotropic mixtures based on marine engine waste heat and LNG cold energy[J]. Energy Conversion and Management, 2021, 228: 113657. |
28 | Le V L, Kheiri A, Feidt M, et al. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (organic Rankine cycle) using pure or zeotropic working fluid[J]. Energy, 2014, 78: 622-638. |
29 | Oyewunmi O, Markides C. Thermo-economic and heat transfer optimization of working-fluid mixtures in a low-temperature organic Rankine cycle system[J]. Energies, 2016, 9(6): 448. |
30 | Georgousopoulos S, Braimakis K, Grimekis D, et al. Thermodynamic and techno-economic assessment of pure and zeotropic fluid ORCs for waste heat recovery in a biomass IGCC plant[J]. Applied Thermal Engineering, 2021, 183: 116202. |
31 | Dong B S, Xu G Q, Li T T, et al. Thermodynamic and economic analysis of zeotropic mixtures as working fluids in low temperature organic Rankine cycles[J]. Applied Thermal Engineering, 2018, 132: 545-553. |
32 | Kazemi N, Samadi F. Thermodynamic, economic and thermo-economic optimization of a new proposed organic Rankine cycle for energy production from geothermal resources[J]. Energy Conversion and Management, 2016, 121: 391-401. |
33 | Zhang S J, Wang H X, Guo T. Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation[J]. Applied Energy, 2011, 88(8): 2740-2754. |
34 | Wu Y D, Zhu Y D, Yu L J. Thermal and economic performance analysis of zeotropic mixtures for organic Rankine cycles[J]. Applied Thermal Engineering, 2016, 96: 57-63. |
35 | Kolahi M, Yari M, Mahmoudi S M S, et al. Thermodynamic and economic performance improvement of ORCs through using zeotropic mixtures: case of waste heat recovery in an offshore platform[J]. Case Studies in Thermal Engineering, 2016, 8: 51-70. |
36 | Radulovic J, Beleno Castaneda N I. On the potential of zeotropic mixtures in supercritical ORC powered by geothermal energy source[J]. Energy Conversion and Management, 2014, 88: 365-371. |
37 | Miao Z, Yang X F, Xu J L, et al. Development and dynamic characteristics of an organic Rankine cycle[J]. Chinese Science Bulletin, 2014, 59(33): 4367-4378. |
38 | Maraver D, Royo J, Lemort V, et al. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications[J]. Applied Energy, 2014, 117: 11-29. |
39 | Gnielinski V. New equations for heat and mass transfer in the turbulent flow in pipes and channels[J]. NASA STI/Recon Technical Report A, 1975, 41(1): 8-16. |
40 | Gungor K E, Winterton R H S. Simplified general correlation for saturated boiling and comparisons of correlation with data[J]. Chemical Engineering Research and Design, 1987, 65: 254-260. |
41 | Shah M M. An improved and extended general correlation for heat transfer during condensation in plain tubes[J]. HVAC & R Research, 2009, 15(5): 889-913. |
42 | Kern D Q. Process Heat Transfer[M]. New York: McGraw-Hill, 1950. |
43 | Turton R, Bailie R C, Whiting W B, et al. Analysis, Synthesis, and Design of Chemical Processes[M]. 4th ed. Englewood: Prentice Hall, 2012: 225-232. |
[1] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[2] | 陈超男, 罗向龙, 杨智, 黄仁龙, 卢沛, 陈健勇, 陈颖. 非共沸混合工质组分调控ORC系统热经济性分析和优化[J]. 化工学报, 2020, 71(5): 2373-2381. |
[3] | 张建元, 赵力. 竖直管内重力对非共沸工质组分迁移的影响[J]. 化工学报, 2013, 64(7): 2394-2399. |
[4] | 倪渊, 赵良举, 刘朝, 莫依璃. 非共沸混合工质ORC低温烟气余热利用分析与优化[J]. 化工学报, 2013, 64(11): 3985-3992. |
[5] | 许雄文,刘金平,曹乐,秦岩,邱国雄,邓雪. 非共沸混合工质在制冷循环中浓度偏移分析[J]. CIESC Journal, 2011, 62(11): 3066-3072. |
[6] | 胡自成;马虎根;宋新南 . 水平细圆管内非共沸混合工质的流动沸腾 [J]. CIESC Journal, 2006, 57(11): 2577-2581. |
[7] | 马虎根, 蔡祖恢, 李美玲. 非共沸混合工质R32/R134a在水平微翅管内流动沸腾特性 [J]. 化工学报, 2003, 54(10): 1369-1373. |
[8] | 赵力; 张启; 涂光备. 一种新型工质在热泵、空调工况下的试验分析 [J]. CIESC Journal, 2002, 53(9): 984-988. |
[9] | 陈民,李沛文,王秋旺,陶文铨. 非共沸混合工质管内流动凝结换热系数的分析与计算 [J]. CIESC Journal, 2001, 52(2): 114-118. |
[10] | 张正国,王世平,耿建军,邓颂九. 非共沸混合工质在水平管束上的冷凝传热及强化 [J]. CIESC Journal, 1996, 47(5): 642-644. |
[11] | 郭新川,魏杰,魏保太. 二元非共沸混合蒸气竖板表面的凝结换热 [J]. CIESC Journal, 1994, 45(5): 618-621. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||