1 |
郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008: 1-7.
|
|
Guo M S, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008: 1-7.
|
2 |
Werther J, Reppenhagen J. Catalyst attrition in fluidized-bed systems[J]. AIChE Journal, 1999, 45(9): 2001-2010.
|
3 |
李路明, 高新宇, 田佩玉, 等. 脱硝催化剂堵塞磨损问题工程案例分析探究[J]. 锅炉制造, 2021(3): 39-42.
|
|
Li L M, Gao X Y, Tian P Y, et al. Case study on blockage and wear of de-NOx catalyst[J]. Boiler Manufacturing, 2021(3): 39-42.
|
4 |
Hatanaka T, Yoda Y. Attrition of ilmenite ore during consecutive redox cycles in chemical looping combustion[J]. Powder Technology, 2019, 356: 974-979.
|
5 |
Li D F, Ke X W, Yang H R, et al. The ash formation and attrition characteristics of an Indonesia lignite coal ash for a 550 MWe ultra supercritical CFB boiler[J]. Chemical Engineering Research and Design, 2019, 147: 579-586.
|
6 |
Bjorklund I S, Dygert J C. Small scale tests for attrition resistance of solids in slurry systems[J]. AIChE Journal, 1968, 14(4): 553-557.
|
7 |
公铭扬, 李晓刚, 杜伟, 等. 流化催化剂磨损机制的研究进展[J]. 摩擦学学报, 2007, 27(1): 91-96.
|
|
Gong M Y, Li X G, Du W, et al. Research progress on fluid catalyst attrition[J]. Tribology, 2007, 27(1): 91-96.
|
8 |
Amblard B, Bertholin S, Bobin C, et al. Development of an attrition evaluation method using a Jet Cup rig[J]. Powder Technology, 2015, 274: 455-465.
|
9 |
Thon A, Werther J. Attrition resistance of a VPO catalyst[J]. Applied Catalysis A: General, 2010, 376(1/2): 56-65.
|
10 |
Choi J H, Moon Y S, Yi C K, et al. Attrition of zinc-titanate sorbent in a bubbling fluidized bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(6): 656-660.
|
11 |
Yao X, Zhang H, Yang H R, et al. An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed[J]. Fuel Processing Technology, 2010, 91(9): 1119-1124.
|
12 |
陶中东, 顾正东, 吴东方. 颗粒流化磨损研究进展[J]. 化工进展, 2014, 33(10): 2535-2539, 2564.
|
|
Tao Z D, Gu Z D, Wu D F. Research progress on fluidized particle attrition[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2535-2539, 2564.
|
13 |
Li F, Briens C, Berruti F, et al. Particle attrition with supersonic nozzles in a fluidized bed at high temperature[J]. Powder Technology, 2012, 228: 385-394.
|
14 |
Alonso M, Arias B, Fernández J R, et al. Measuring attrition properties of calcium looping materials in a 30 kW pilot plant[J]. Powder Technology, 2018, 336: 273-281.
|
15 |
Zhang Z, Ghadiri M. Impact attrition of particulate solids. Part 2: Experimental work[J]. Chemical Engineering Science, 2002, 57(17): 3671-3686.
|
16 |
Wu D F, Gu Z D, Li Y D. Attrition of catalyst particles in a laboratory-scale fluidized-bed reactor[J]. Chemical Engineering Science, 2015, 135: 431-440.
|
17 |
许家豪. 提升管内催化剂磨损研究及数值模拟[D]. 东营: 中国石油大学(华东), 2016.
|
|
Xu J H. Study and numerical simulation of catalyst attrition in the riser reactor[D]. Dongying: China University of Petroleum (East China), 2016.
|
18 |
Yang Z Q, Ren W G, Zhang L, et al. Limestone particle attrition and size distribution in a bench scale bubbling fluidized bed[J]. Global Nest Journal, 2015, 17(2): 236-247.
|
19 |
Park Y S, Kim H S, Shun D, et al. Attrition characteristics of alumina catalyst for fluidized bed incinerator[J]. Korean Journal of Chemical Engineering, 2000, 17(3): 284-287.
|
20 |
王永邦, 刘小军, 李泽斯, 等. 沥青球在流化床反应器中氧化不熔化及后续炭化行为的研究[J]. 炭素技术, 2010, 29(6): 5-8, 12.
|
|
Wang Y B, Liu X J, Li Z S, et al. Oxidative stabilization of pitch spheres in fluidized bed and their carbonization behavior[J]. Carbon Techniques, 2010, 29(6): 5-8, 12.
|
21 |
郭源, 邵应娟, 钟文琪, 等. 煤沥青球的氧化不熔化过程特性[J]. 化工学报, 2018, 69(1): 499-506.
|
|
Guo Y, Shao Y J, Zhong W Q, et al. Characteristics of oxidation stabilization process of coal pitch based spheres[J]. CIESC Journal, 2018, 69(1): 499-506.
|
22 |
李开喜. 一步法低能耗制备沥青球的技术: 103695019A[P]. 2014-04-02.
|
|
Li K X. One-step and low energy consumption preparation technology of pitch spheres: 103695019A[P]. 2014-04-02.
|
23 |
金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001: 1-7.
|
|
Jin Y. Fluidization Engineering Principles[M]. Beijing: Tsinghua University Press, 2001: 1-7.
|
24 |
任伟光. 低浓度甲烷催化剂颗粒气固流化态的磨损特性研究[D]. 重庆: 重庆大学, 2016.
|
|
Ren W G. Experimental study on attrition characteristics of low-concentration methane catalyst particles[D]. Chongqing: Chongqing University, 2016.
|
25 |
Wu D F, Wu F H, Gu Z D. Catalyst attrition in an ASTM fluidized bed[J]. Catalysis Today, 2016, 264: 70-74.
|
26 |
Zakeri M, Samimi A, Khorram M, et al. Effect of forming on selectivity and attrition of co-precipitated Co-Mn Fischer-Tropsch catalysts[J]. Powder Technology, 2010, 200(3): 164-170.
|
27 |
Kang D H, Ko C K, Lee D H. Attrition characteristics of iron ore by an air jet in gas-solid fluidized beds[J]. Powder Technology, 2017, 316: 69-78.
|
28 |
Reppenhagen J, Werther J. Catalyst attrition in cyclones[J]. Powder Technology, 2000, 113(1/2): 55-69.
|
29 |
Yin R L, Wang K, Han B B, et al. Structural evaluation of coal-tar-pitch-based carbon materials and their Na+ storage properties[J]. Coatings, 2021, 11(8): 948.
|
30 |
Tavares L M. Analysis of particle fracture by repeated stressing as damage accumulation[J]. Powder Technology, 2009, 190(3): 327-339.
|
31 |
Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94.
|
32 |
Okhovat-Alavian S M, Behin J, Mostoufi N. Investigating bubble dynamics in a semi-cylindrical gas-solid fluidized bed[J]. Powder Technology, 2020, 370: 129-136.
|
33 |
Gao Q H, Wang T, Tang T Q, et al. Macroscopic and microscopic flow characteristics of particles in a sound assisted bubbling fluidized bed[J]. Chemical Engineering and Processing - Process Intensification, 2020, 156: 108102.
|
34 |
Miao M, Yao X, Zhang S M, et al. Attrition performance and morphology of limestone under different conditions in fluidized bed[J]. Fuel Processing Technology, 2021, 221: 106939.
|