化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2486-2495.DOI: 10.11949/0438-1157.20220152
收稿日期:
2022-01-26
修回日期:
2022-04-11
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
陈延佩
作者简介:
孔令菲(1997—),女,硕士研究生,基金资助:
Lingfei KONG(),Yanpei CHEN(),Wei WANG
Received:
2022-01-26
Revised:
2022-04-11
Online:
2022-06-05
Published:
2022-06-30
Contact:
Yanpei CHEN
摘要:
气固流化床中的团聚等介尺度结构严重影响气固的整体流化特性、传热、传质和反应效率,因此介尺度结构的研究至关重要。简要回顾颗粒介尺度结构的定义与分类,然后从流体-颗粒、颗粒-颗粒之间的力和非弹性碰撞相互作用出发,总结分析了颗粒介尺度结构形成原因和动力学演化过程的研究现状和发展动态。重点关注细颗粒与超细纳米颗粒形成的介尺度结构,即结块,并针对结块形成原因,讨论了颗粒间范德华力计算以及结块的力平衡理论模型,提出了细颗粒介尺度结构进一步的研究方向,即研究带有颗粒-颗粒作用力的介尺度结构的动态演化规律,为精准调控介尺度结构提供理论依据。
中图分类号:
孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495.
Lingfei KONG, Yanpei CHEN, Wei WANG. Dynamic study of mesoscale structures of particles in gas-solid fluidization[J]. CIESC Journal, 2022, 73(6): 2486-2495.
1 | Sun Z N, Zhang C, Zhu J. Numerical investigations on gas-solid flow in circulating fluidized bed risers using a new cluster-based drag model[J]. Particuology, 2022, 63: 9-23. |
2 | Du S H, Liu L J. Numerical simulation of bubbling fluidization using a local bubble-structure-dependent drag model[J]. The Canadian Journal of Chemical Engineering, 2019, 97(S1): 1741-1755. |
3 | Wang Y J, Li J J, Zhang L, et al. Phase-field study on the effect of initial particle aggregation on the transient coarsening behaviors[J]. Modelling and Simulation in Materials Science and Engineering, 2020, 28(7): 075007. |
4 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
5 | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
6 | Jiang X X, Wang S Y, Shao B L, et al. Analysis of dissipative mechanisms of cluster heterogeneous structures in gas-solid riser[J]. Chemical Engineering Science, 2021, 246: 116878. |
7 | Fong K O, Coletti F. Experimental analysis of particle clustering in moderately dense gas–solid flow[J]. Journal of Fluid Mechanics, 2022, 933: A6. |
8 | Fabre A, Salameh S, Ciacchi L C, et al. Contact mechanics of highly porous oxide nanoparticle agglomerates[J]. Journal of Nanoparticle Research: an Interdisciplinary Forum for Nanoscale Science and Technology, 2016, 18: 200. |
9 | van Ommen J R, Valverde J M, Pfeffer R. Fluidization of nanopowders: a review[J]. Journal of Nanoparticle Research: an Interdisciplinary Forum for Nanoscale Science and Technology, 2012, 14(3): 1-29. |
10 | Morooka S, Kusakabe K, Kobata A, et al. Fluidization state of ultrafine powders[J]. Journal of Chemical Engineering of Japan, 1988, 21(1): 41-46. |
11 | Grass R N, Tsantilis S, Pratsinis S E. Design of high-temperature, gas-phase synthesis of hard or soft TiO2 agglomerates[J]. AIChE Journal, 2006, 52(4): 1318-1325. |
12 | Teleki A, Wengeler R, Wengeler L, et al. Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion[J]. Powder Technology, 2008, 181(3): 292-300. |
13 | Liu H P, Wang S W. Fluidization behaviors of nanoparticle agglomerates with high initial bed heights[J]. Powder Technology, 2021, 388: 122-128. |
14 | Wang Y, Gu G S, Wei F, et al. Fluidization and agglomerate structure of SiO2 nanoparticles[J]. Powder Technology, 2002, 124(1/2): 152-159. |
15 | Li S Q, Marshall J S, Liu G Q, et al. Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering[J]. Progress in Energy and Combustion Science, 2011, 37(6): 633-668. |
16 | Durhuus F L, Wandall L H, Boisen M H, et al. Simulated clustering dynamics of colloidal magnetic nanoparticles[J]. Nanoscale, 2021, 13(3): 1970-1981. |
17 | Wang H F, Chen Y P, Wang W. Scale-dependent nonequilibrium features in a bubbling fluidized bed[J]. AIChE Journal, 2018, 64(7): 2364-2378. |
18 | Ma G, Zou Y X, Chen Y, et al. Spatial correlation and temporal evolution of plastic heterogeneity in sheared granular materials[J]. Powder Technology, 2021, 378: 263-273. |
19 | Zhang M C, Chen T, Fan H J. Mesoscale analysis on clusters in conjunction with fast fluidized bed modeling[J]. Powder Technology, 2022, 396: 241-259. |
20 | Brilliantov N V, Albers N, Spahn F, et al. Collision dynamics of granular particles with adhesion[J]. Physical Review E, Covering Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(5): 051302. |
21 | McMillan J, Shaffer F, Gopalan B, et al. Particle cluster dynamics during fluidization[J]. Chemical Engineering Science, 2013, 100: 39-51. |
22 | Han M Q, Zhou Y, Zhu J. Improvement on flowability and fluidization of Group C particles after nanoparticle modification[J]. Powder Technology, 2020, 365: 208-214. |
23 | Peressadko A G, Hosoda N, Persson B N J. Influence of surface roughness on adhesion between elastic bodies[J]. Physical Review Letters, 2005, 95(12): 124301. |
24 | Zhao Z D, Liu D Y, Ma J L, et al. Fluidization of nanoparticle agglomerates assisted by combining vibration and stirring methods[J]. Chemical Engineering Journal, 2020, 388: 124213. |
25 | Zhu C, Liu G L, Yu Q, et al. Sound assisted fluidization of nanoparticle agglomerates[J]. Powder Technology, 2004, 141(1/2): 119-123. |
26 | Goldhirsch I. Rapid granular flows[J]. Annual Review of Fluid Mechanics, 2003, 35: 267-293. |
27 | Kasbaoui M H, Koch D L, Subramanian G, et al. Preferential concentration driven instability of sheared gas-solid suspensions[J]. Journal of Fluid Mechanics, 2015, 770: 85-123. |
28 | Cocco R, Shaffer F, Hays R, et al. Particle clusters in and above fluidized beds[J]. Powder Technology, 2010, 203(1): 3-11. |
29 | Tian Y J, Geng J W, Wang W. On the choice of mesoscale drag markers[J]. AIChE Journal, 2022, 68(4): e17558. |
30 | Jiang M, Zhang Y, Yu Y X, et al. A scale-independent modeling method for filtered drag in fluidized gas-particle flows[J]. Powder Technology, 2021, 394: 1050-1076. |
31 | Stroh A, Daikeler A, Nikku M, et al. Coarse grain 3D CFD-DEM simulation and validation with capacitance probe measurements in a circulating fluidized bed[J]. Chemical Engineering Science, 2019, 196: 37-53. |
32 | Yang Z, Lu B N, Wang W. Coupling artificial neural network with EMMS drag for simulation of dense fluidized beds[J]. Chemical Engineering Science, 2021, 246: 117003. |
33 | Lobel B T, Robertson H, Webber G B, et al. Impact of surface free energy on electrostatic extraction of particles from a bed[J]. Journal of Colloid and Interface Science, 2022, 611: 617-628. |
34 | Li X Q, Wang D F, Huang F L, et al. Stretching and rupture of a viscous liquid bridge between two spherical particles[J]. Asia-Pacific Journal of Chemical Engineering, 2021, 16(1): e2579. |
35 | Royer J R, Evans D J, Oyarte L, et al. High-speed tracking of rupture and clustering in freely falling granular streams[J]. Nature, 2009, 459(7250): 1110-1113. |
36 | Matsusaka S, Maruyama H, Matsuyama T, et al. Triboelectric charging of powders: a review[J]. Chemical Engineering Science, 2010, 65(22): 5781-5807. |
37 | Pei C L, Wu C Y. DEM-CFD modelling of electrostatic phenomena in fluidization[C]//Proceedings of the 7th International Conference on Discrete Element Methods, 2017, 188: 995-1003. |
38 | Israelachvili J N. Intermolecular and Surface Forces[M]. London: Academic Press, 1992: 577-578. |
39 | Martin R. Introduction to particle technology[J]. Particle Acceleration in Astrophysical Plasmas Geospace & Beyond, 2008, 1: 27. |
40 | Tamim S I, Bostwick J B. Plateau–Rayleigh instability in a soft viscoelastic material[J]. Soft Matter, 2021, 17(15): 4170-4179. |
41 | Shi X D, Brenner M P, Nagel S R. A cascade of structure in a drop falling from a faucet[J]. Science, 1994, 265(5169): 219-222. |
42 | Lamarche C Q, Liu P, Kellogg K M, et al. Toward general regime maps for cohesive-particle flows: force versus energy-based descriptions and relevant dimensionless groups[J]. AIChE Journal, 2021, 67(9): e17337. |
43 | Castellanos A. The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders[J]. Advances in Physics, 2005, 54(4): 263-376. |
44 | Bahramian A. The mutual effects between the interparticle forces and mechanical properties on fluidization of TiO2 nanoparticle agglomerates in a conical fluidized bed: nanoindentation and pressure fluctuation analysis[J]. Journal of Nanoparticle Research, 2019, 21(9): 1-17. |
45 | Pan S Y, Ma J L, Liu D Y, et al. Distinguishing liquid transport patterns during the fluidization of wet particles with bed expansion behaviors[J]. Industrial & Engineering Chemistry Research, 2020, 59(44): 19600-19606. |
46 | Tausendschön J, Kolehmainen J, Sundaresan S, et al. Coarse graining Euler-Lagrange simulations of cohesive particle fluidization[J]. Powder Technology, 2020, 364: 167-182. |
47 | Lamarche C Q, Leadley S, Liu P, et al. Method of quantifying surface roughness for accurate adhesive force predictions[J]. Chemical Engineering Science, 2017, 158: 140-153. |
48 | 佟颖, Nouman Ahmad, 鲁波娜, 等. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692. |
Tong Y, Ahmad N, Lu B N, et al. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model[J]. CIESC Journal, 2019, 70(5): 1682-1692. | |
49 | Gady B, Schleef D, Reifenberger R, et al. Identification of electrostatic and van der Waals interaction forces between a micrometer-size sphere and a flat substrate[J]. Physical Review. B, Condensed Matter, 1996, 53(12): 8065-8070. |
50 | Molerus O. Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forces[J]. Powder Technology, 1982, 33(1): 81-87. |
51 | Fullmer W D, Hrenya C M. The clustering instability in rapid granular and gas-solid flows[J]. Annual Review of Fluid Mechanics, 2017, 49: 485-510. |
52 | Hrenya C M, Sinclair J L. Effects of particle-phase turbulence in gas-solid flows[J]. AIChE Journal, 1997, 43(4): 853-869. |
53 | Bisgaard J, Muldbak M, Cornelissen S, et al. Flow-following sensor devices: a tool for bridging data and model predictions in large-scale fermentations[J]. Computational and Structural Biotechnology Journal, 2020, 18: 2908-2919. |
54 | 马吉亮, 刘道银, 梁财, 等. 黏性Geldart B类颗粒流化特性实验研究[J]. 工程热物理学报, 2017, 38(8): 1702-1706. |
Ma J L, Liu D Y, Liang C, et al. Experimental study on the fluidization dynamics of cohesive Geldart B particles[J]. Journal of Engineering Thermophysics, 2017, 38(8): 1702-1706. | |
55 | 殷上轶, 钟文琪, 卢平, 等. 基于图像处理的循环流化床团聚物体积分数及其容积份额[J]. 燃烧科学与技术, 2018, 24(6): 506-512. |
Yin S Y, Zhong W Q, Lu P, et al. Cluster density and fraction in a circulating fluidized bed based on image processing[J]. Journal of Combustion Science and Technology, 2018, 24(6): 506-512. | |
56 | Liu Y, Dai Q T, Qi H Y. Cluster identification criterion with experimental validation for the cluster solid holdup model during fluidization[J]. Powder Technology, 2020, 373: 459-467. |
57 | Cai P, Jin Y, Yu Z Q, et al. Mechanism of flow regime transition from bubbling to turbulent fluidization[J]. AIChE Journal, 1990, 36(6): 955-956. |
58 | Chew J W, Hays R, Findlay J G, et al. Cluster characteristics of Geldart Group B particles in a pilot-scale CFB riser ( Ⅰ ) : Monodisperse systems[J]. Chemical Engineering Science, 2012, 68(1): 72-81. |
59 | Yang J S, Zhu J. A novel method based on image processing to visualize clusters in a rectangular circulating fluidized bed riser[J]. Powder Technology, 2014, 254: 407-415. |
60 | Mondal D N, Kallio S, Saxén H. Length scales of solid clusters in a two-dimensional circulating fluidized bed of Geldart B particles[J]. Powder Technology, 2015, 269: 207-218. |
61 | Mondal D N, Kallio S, Saxén H, et al. Experimental study of cluster properties in a two-dimensional fluidized bed of Geldart B particles[J]. Powder Technology, 2016, 291: 420-436. |
62 | Wang H F, Chen Y P, Wang W. Particle-level dynamics of clusters: experiments in a gas-fluidized bed[J]. AIChE Journal, 2022, 68(3): e17525. |
63 | Lu L Q, Liu X W, Li T W, et al. Assessing the capability of continuum and discrete particle methods to simulate gas-solids flow using DNS predictions as a benchmark[J]. Powder Technology, 2017, 321: 301-309. |
64 | Liu P Y, Hrenya C M. Cluster-induced deagglomeration in dilute gravity-driven gas-solid flows of cohesive grains[J]. Physical Review Letters, 2012, 121(23): 238001. |
65 | Li D, Wang S Y, Liu G D, et al. A dynamic cluster structure-dependent drag coefficient model applied to gas-solid risers[J]. Powder Technology, 2018, 325: 381-395. |
66 | Jiang X X, Wang S Y, Li Z G, et al. Pulsation active method-based particle cluster regulation using dynamic cluster structure-dependent drag model in a fluidized bed riser[J]. Chemical Engineering Science, 2022, 249: 117370. |
67 | Li J, Zhou L, Li P C, et al. Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas[J]. Chemical Engineering Journal, 2013, 219: 183-189. |
68 | Raganati F, Gargiulo V, Ammendola P, et al. CO2 capture performance of HKUST-1 in a sound assisted fluidized bed[J]. Chemical Engineering Journal, 2014, 239: 75-86. |
69 | Maghsoodi S, Khodadadi A, Mortazavi Y. A novel continuous process for synthesis of carbon nanotubes using iron floating catalyst and MgO particles for CVD of methane in a fluidized bed reactor[J]. Applied Surface Science, 2010, 256(9): 2769-2774. |
70 | Wang X S, Rahman F, Rhodes M J. Nanoparticle fluidization and Geldart's classification[J]. Chemical Engineering Science, 2007, 62(13): 3455-3461. |
71 | Li Y M, Somorjai G A. Nanoscale advances in catalysis and energy applications[J]. Nano Letters, 2010, 10(7): 2289-2295. |
72 | Bell A T. The impact of nanoscience on heterogeneous catalysis[J]. Science, 2003, 299(5613): 1688-1691. |
73 | Hamaker H C. The London—van der Waals attraction between spherical particles[J]. Physica, 1937, 4(10): 1058-1072. |
74 | Johnson K L, Greenwood J A. An adhesion map for the contact of elastic spheres[J]. Journal of Colloid and Interface Science, 1997, 192(2): 326-333. |
75 | Johnson K L, Kendall K, Roberts A D. Surface energy and contact of elastic solids[J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 1971, 324(1558): 301-313. |
76 | Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion of particles[J]. Journal of Colloid and Interface Science, 1975, 53(2): 314-326. |
77 | Schaefer D M, Carpenter M, Gady B, et al. Surface roughness and its influence on particle adhesion using atomic force techniques[J]. Journal of Adhesion Science and Technology, 1995, 9(8): 1049-1062. |
78 | Cai S C, Shen Y X, Io C W. The mesoscopic collective motion of self-propelling active particle suspension confined in two-dimensional micro-channel[J]. Journal of Physics. Condensed Matter: an Institute of Physics Journal, 2020, 32(9): 095101. |
79 | Liu P Y, LaMarche C Q, Kellogg K M, et al. Cohesive grains: bridging microlevel measurements to macrolevel flow behavior via surface roughness[J]. AIChE Journal, 2016, 62(10): 3529-3537. |
80 | Butt H J, Kappl M. Surface and Interfacial Forces [M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. |
81 | Chaouki J, Chavarie C, Klvana D, et al. Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels[J]. Powder Technology, 1985, 43(2): 117-125. |
82 | Zhou T, Li H Z. Force balance modelling for agglomerating fluidization of cohesive particles[J]. Powder Technology, 2000, 111(1/2): 60-65. |
83 | Tamadondar M R, Zarghami R, Boutou K, et al. Size of nanoparticle agglomerates in fluidization[J]. The Canadian Journal of Chemical Engineering, 2016, 94(3): 476-484. |
[1] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[2] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[3] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[4] | 郑志航, 马郡男, 闫子涵, 卢春喜. 提升管射流影响区内压力脉动特性研究[J]. 化工学报, 2023, 74(6): 2335-2350. |
[5] | 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144. |
[6] | 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061. |
[7] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[8] | 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104. |
[9] | 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540. |
[10] | 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467. |
[11] | 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485. |
[12] | 李铁男, 赵碧丹, 赵鹏, 张永民, 王军武. 气固流化床启动阶段挡板内构件受力特性的CFD-DEM模拟[J]. 化工学报, 2022, 73(6): 2649-2661. |
[13] | 范小强, 黄正梁, 孙婧元, 王靖岱, 王晓飞, 胡晓波, 韩国栋, 阳永荣, 吴文清. 气液法流化床乙烯云聚合工艺开发及产品高性能化[J]. 化工学报, 2022, 73(6): 2742-2747. |
[14] | 管小平, 杨宁. 基于介尺度稳定性条件的多相流曳力与群体平衡模型[J]. 化工学报, 2022, 73(6): 2427-2437. |
[15] | 刘梦溪, 范怡平, 闫子涵, 姚秀颖, 卢春喜. 提升管进料区内气体射流流动行为的调控及工业应用[J]. 化工学报, 2022, 73(6): 2496-2513. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 567
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 587
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||