化工学报 ›› 2021, Vol. 72 ›› Issue (12): 5904-5927.DOI: 10.11949/0438-1157.20211278
收稿日期:
2021-09-03
修回日期:
2021-11-05
出版日期:
2021-12-05
发布日期:
2021-12-22
通讯作者:
邵媛媛,祝京旭
作者简介:
王荘(1997—),男,硕士研究生,Zhuang WANG1(),Xiao LYU1,Yuanyuan SHAO1(),Jesse ZHU2()
Received:
2021-09-03
Revised:
2021-11-05
Online:
2021-12-05
Published:
2021-12-22
Contact:
Yuanyuan SHAO,Jesse ZHU
摘要:
自1921年至今,流态化科学与技术的发展迎来了其辉煌的百年。前半个世纪的发展中,在大力推广其工业应用的同时,科学家们做了许多基础理论研究,为流态化的发展奠定了牢固的基石。流态化的早期理论研究,先是以“美国派”的Lewis、Elgin等学者为代表的,以单颗粒流动为主线的“概括式”研究方式,然后是以“英国派”的Toomey、Rowe、Davidson等学者为代表的,以气固分相为特征开发出气固流化系统理论的“区域式”研究方式。另外,Wilhelm和Kwauk提出了散式与聚式流态化分类,Ergun和Richardson-Zaki提出了最小流态化速度及床层压降和床层膨胀的流态化基本方程。这些早期流态化理论的发展不仅促发了流态化后半个世纪的多样性应用,而且对启迪后续的研究方向,强化多相流反应过程,使之更好地服务于经济社会的发展,并对实现节能减排和碳中和的战略目标具有重要意义。
中图分类号:
王荘, 吕潇, 邵媛媛, 祝京旭. 流态化的往昔寻觅及未来启示[J]. 化工学报, 2021, 72(12): 5904-5927.
Zhuang WANG, Xiao LYU, Yuanyuan SHAO, Jesse ZHU. Early exploration of fluidization theory and its inspiration to the future[J]. CIESC Journal, 2021, 72(12): 5904-5927.
1 | Brown G. Fluidization of Solids[M]// Unit Operations. Hoboken: Wiley, 1950: 269-274. |
2 | 宋应星. 明本天工开物[M]. 影印本. 北京: 国家图书馆出版社, 2019. |
Song Y X. Exploitation of the Works of Nature[M]. Beijing: National Library of China Publishing House, 2019. | |
3 | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008: 1-6. |
Kwauk M, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008: 1-6. | |
4 | Agricola G. De Re Metallica[M]. Hoover H C, Hoover L H, trans. New York: Dover Publications, Inc., 1950. |
5 | Cui H P, Grace J R. Fluidization of biomass particles: a review of experimental multiphase flow aspects[J]. Chemical Engineering Science, 2007, 62(1/2): 45-55. |
6 | Ommen J R, Valverde J M, Pfeffer R. Fluidization of nanopowders: a review[J]. Journal of Nanoparticle Research, 2012, 14(3): 1-29. |
7 | Wang J Y, Shao Y Y, Yan X L, et al. Review of (gas)-liquid-solid circulating fluidized beds as biochemical and environmental reactors[J]. Chemical Engineering Journal, 2020, 386: 121951. |
8 | 金涌.概论[M]//金涌,祝京旭,汪展文,等. |
流态化工程原理. 北京: 清华大学出版社, 2001: 1-15. | |
Jin Y. Overview[M]//Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles. Beijing: Tsinghua University Press, 2001: 1-15. | |
9 | Wilhelm R H, Kwauk M. Fluidization of solid particles[J]. Chemical Engineering Progress, 1948, 44(3): 201-218. |
10 | Liu Y P, Peng J H, Kansha Y, et al. Novel fluidized bed dryer for biomass drying[J]. Fuel Processing Technology, 2014, 122: 170-175. |
11 | Amjadi O, Tahmasebpoor M. Improving fluidization behavior of cohesive Ca(OH)2 adsorbent using hydrophilic silica nanoparticles: parametric investigation[J]. Particuology, 2018, 40: 52-61. |
12 | Alnaief M, Antonyuk S, Hentzschel C M, et al. A novel process for coating of silica aerogel microspheres for controlled drug release applications[J]. Microporous and Mesoporous Materials, 2012, 160: 167-173. |
13 | Ma K Y, Sun X L, Shao Y Y, et al. Hydrodynamic characteristics of bubble-induced three-phase inverse fluidized bed (BIFB)[J]. Chemical Engineering Science, 2019, 209: 115177. |
14 | Zhang X W, Zhou Y, Zhu J. Enhanced fluidization of group A particles modulated by group C powder[J]. Powder Technology, 2021, 377: 684-692. |
15 | Shaul S, Rabinovich E, Kalman H. Generalized flow regime diagram of fluidized beds based on the height to bed diameter ratio[J]. Powder Technology, 2012, 228: 264-271. |
16 | Sun Z N, Zhu J. A consolidated flow regime map of upward gas fluidization[J]. AIChE Journal, 2019, 65(9): e16672. |
17 | Xu X, Chen J, Luo Z F, et al. Fluidization characteristics of air dense medium agitated separation fluidized bed with different distributors[J]. Mineral Processing and Extractive Metallurgy Review, 2019, 40(5): 299-306. |
18 | Yang X L, Zhang Y D, Yang Y, et al. Fluidization of Geldart D type particles in a shallow vibrated gas-fluidized bed[J]. Powder Technology, 2017, 305: 333-339. |
19 | Driessen R T, Rick T, van der Linden J J Q, et al. Characterization of mass transfer in a shallow fluidized bed for adsorption processes: modeling and supporting experiments[J]. Chemical Engineering Journal, 2020, 388: 123931. |
20 | Wang X Y, Liu M Y, Yang Z G. Coupled model based on radiation transfer and reaction kinetics of gas-liquid-solid photocatalytic mini-fluidized bed[J]. Chemical Engineering Research and Design, 2018, 134: 172-185. |
21 | Blaszczuk A, Pogorzelec M, Shimizu T. Heat transfer characteristics in a large-scale bubbling fluidized bed with immersed horizontal tube bundles[J]. Energy, 2018, 162: 10-19. |
22 | Tawfik M H M, Refaat Diab M, Mohmed Abdelmotalib H. An experimental investigation of wall-bed heat transfer and flow characteristics in a swirling fluidized bed reactor[J]. Applied Thermal Engineering, 2019, 155: 501-507. |
23 | Davidson J F, Harrison D. Fluidization[M]. Waltham: Academic, 1971. |
24 | Kunii D, Levenspiel O. Fluidization Engineering[M]. New York: John Wiley & Sons, Inc., and Toppan Co., 1969 |
25 | 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62. |
Li H Z, Kwauk M. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62. | |
26 | Winkler F. German patent NO. 437970[P]. 1922. |
27 | Fan L S. Gas-Liquid-Solid Fluidization Engineering[M]. Boston: Butterworths, 1989. |
28 | 钱笑公. 温克勒气化法的特性和进展[J]. 煤炭化工设计, 1985, 13(1): 32-49. |
Qian X G. Characteristics and progress of Winkler gasification method[J]. Coal Chemical Design, 1985, 13(1): 32-49. | |
29 | 陈俊武, 曹汉昌. 催化裂化工艺与工程[M]. 北京: 中国石油化工出版社, 1995. |
Chen J W, Cao H C. Catalytic Cracking Process and Engineering[M]. Beijing: China Petrochemical Press, 1995. | |
30 | Squires A M, Kwauk M, Avidan A A. Fluid beds: at last, challenging two entrenched practices[J]. Science, 1985, 230(4732): 1329-1337. |
31 | Jahnig C E, Campbell D L, Martin H Z. History of fluidized solids development at exxon[M]//Fluidization. Boston, MA: Springer US, 1980: 3-24. |
32 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (Ⅰ): Homogeneous expansion[J]. Powder Technology, 1980, 26(1): 35-46. |
33 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (Ⅱ): Voidage of the dense phase in bubbling beds[J]. Powder Technology, 1980, 26(1): 47-55. |
34 | Abrahamsen A R, Geldart D. Behaviour of gas-fluidized beds of fine powders (Ⅲ): Effective thermal conductivity of a homogeneously expanded bed[J]. Powder Technology, 1980, 26(1): 57-65. |
35 | Yerushalmi J, Turner D H, Squires A M. The fast fluidized bed[J]. Industrial & Engineering Chemistry Process Design and Development, 1976, 15(1): 47-53. |
36 | Lewis W K, Gilliland E R, Bauer W C. Characteristics of fluidized particles[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1104-1117. |
37 | Lapidus L, Elgin J C. Mechanics of vertical-moving fluidized systems[J]. AIChE Journal, 1957, 3(1): 63-68. |
38 | Elgin J C, Foust H C. Countercurrent flow of particles through moving continuous fluid[J]. Industrial & Engineering Chemistry, 1950, 42(6): 1127-1141. |
39 | Gilliland E R, Mason E A. Gas and solid mixing in fluidized beds[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1191-1196. |
40 | Lewis W K, Gilliland E R, McBride G T. Gasification of carbon by carbon dioxide in fluidized powder bed[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1213-1226. |
41 | Lewis W K, Gilliland E R, Reed W A. Reaction of methane with copper oxide in a fluidized bed[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1227-1237. |
42 | Lewis W K, Gilliland E R, Glass W. Solid-catalyzed reaction in a fluidized bed[J]. AIChE Journal, 1959, 5(4): 419-426. |
43 | Toomey R D, Johnstone H F. Gaseous fluidization of solid particles[J]. Chemical Engineering Progress, 1952, 48: 220-225. |
44 | Davidson J F, Harrison D. Fluidized Particles[M]. Cambridge: Cambridge University Press, 1963. |
45 | Rowe P N, Wace P F. Gas-flow patterns in fluidized beds[J]. Nature, 1960, 188(4752): 737-738. |
46 | Rowe P N, Henwood G A. Drag forces in hydraulic model of a fluidized bed (Ⅰ)[J]. Transactions of the Institution of Chemical Engineers, 1961, 39: 43-54. |
47 | Rowe P N. Drag forces in hydraulic model of a fluidized bed (Ⅱ)[J]. Transactions of the Institution of Chemical Engineers, 1961, 39: 175-180. |
48 | Gilliland E R, Mason E A. Gas mixing in beds of fluidized solids[J]. Industrial & Engineering Chemistry, 1952, 44(1): 218-224. |
49 | Gilliland E R, Mason E A, Oliver R C. Gas-flow patterns in beds of fluidized solids[J]. Industrial & Engineering Chemistry, 1953, 45(6): 1177-1185. |
50 | Lewis W K, Gilliland E R, Paxton R R. Low-temperature oxidation of carbon[J]. Industrial & Engineering Chemistry, 1954, 46(6): 1327-1331. |
51 | Ergun S, Orning A A. Fluid flow through randomly packed columns and fluidized beds[J]. Industrial & Engineering Chemistry, 1949, 41(6): 1179-1184. |
52 | Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. |
53 | Leva M, Grummer M, Weintraub M. Introduction to fluidization[J]. Chemical Engineering Progress, 1948, 44(7): 511-520. |
54 | Richardson J F, Zaki W N. Sedimentation and fluidizations (Ⅰ)[J]. Transactions of the Institution of Chemical Engineers, 1954, 32: 35. |
55 | Wen C Y, Yu Y H. A generalized method for predicting the minimum fluidization velocity[J]. AIChE Journal, 1966, 12(3): 610-612. |
56 | Lewis E W, Bowerman E W. Fluidization of solid particles in liquids[J]. Chemical Engineering Progress, 1952, 48: 603-609. |
57 | Varadi T, Grace J R. High pressure fluidization in a two-dimensional bed[M]//Davidson J F, Keairrns D L. Fluidization. Cambridge: Cambridge University Press, 1978. |
58 | Romero J B, Johanson L N. Factors affecting fluidized bed quality[J]. Chemical Engineering Progress, Symposium Series, 1962, 58(38): 28-37. |
59 | Geldart D. Types of gas fluidization[J]. Powder Technology, 1973, 7(5): 285-292. |
60 | Appel F J, Elgin J C. Countercurrent extraction of benzoic acid between toluene and water[J]. Industrial & Engineering Chemistry, 1937, 29(4): 451-459. |
61 | Price B G, Lapidus L, Elgin J C. Mechanics of vertical moving fluidized systems (Ⅱ): Application to countercurrent operation[J]. AIChE Journal, 1959, 5(1): 93-97. |
62 | Struve D L, Lapidus L, Elgin J C. The mechanics of moving vertical fluidized systems (Ⅲ): Application to cocurrent countergravity[J]. The Canadian Journal of Chemical Engineering, 1958, 36(4): 141-152. |
63 | Hoffman R F, Lapidus L, Elgin J C. The mechanics of vertical moving fluidized systems (Ⅳ): Application to batch-fluidized systems with mixed particle sizes[J]. AIChE Journal, 1960, 6(2): 321-324. |
64 | Quinn J A, Lapidus L, Elgin J C. The mechanics of moving vertical fluidized systems (Ⅴ): Concurrent cogravity flow[J]. AIChE Journal, 1961, 7(2): 260-263. |
65 | Richardson J F, Meikle R A. Sedimentation and fluidization (Ⅲ): The sedimentation of uniform fine particles and two-component mixtures of solids[J]. Transactions of the Institution of Chemical Engineers, 1961, 39(5): 348-356. |
66 | Richardson J F, Meikle R A. Sedimentation and fluidization (Ⅳ): The sedimentation of uniform fine particles and two-component mixtures of solids[J]. Transactions of the Institution of Chemical Engineers, 1961, 39(5): 857-868. |
67 | Khan A R, Richardson J F. Fluid-particle interactions and flow characteristics of fluidized beds and settling suspensions of spherical particles[J]. Chemical Engineering Communications, 1989, 78(1): 111-130. |
68 | Beyaert B O, Lapidus L, Elgin J C. The mechanics of vertical moving liquid-liquid fluidized systems (Ⅱ): Countercurrent flow[J]. AIChE Journal, 1961, 7(1): 46-48. |
69 | Zenz F A. Two-phase fluid-solid flow[J]. Industrial & Engineering Chemistry, 1949, 41(12): 2801-2806. |
70 | Wilhelm R H, Valentine S. The fluidized bed—transition state in the vertical pneumatic transport of particles[J]. Industrial & Engineering Chemistry, 1951, 43: 1199-1203. |
71 | Mertes T S, Rhodes H B. Liquid particle behavior (Ⅰ)[J]. Chemical Engineering Progress, 1955, 51: 429-432. |
72 | Mertes T S, Rhodes H B. Liquid particle behavior (Ⅱ)[J]. Chemical Engineering Progress, 1955, 51: 517-522. |
73 | Zenz F A, Othmer D F. Fluidization and Fluid-particle Systems[M]. New York: Reinhold, 1960: 150. |
74 | 郭慕孙, 庄一安. 流态化-垂直系统中均匀球体和流体的运动[M]. 北京: 科学出版社, 1963: 26. |
Kwauk M, Zhuang Y A. Fluidization-Motion of Uniform Sphere and Fluid in Vertical System[M]. Beijing: Science Press, 1963: 26. | |
75 | Kwauk M. Generalized fluidization (Ⅰ): Steady-state motion[J]. Scientia Sinica, 1963, 12(4): 587-612. |
76 | Kwauk M. Generalized fluidization (Ⅱ): Accelerative motion with steady profiles[J]. Scientia Sinica, 1968, 13(9): 1477-1492. |
77 | Deemter J J, Laan E T. Momentum and energy balances for dispersed two-phase flow[J]. Applied Scientific Research, 1961, 10(1): 102-108. |
78 | Grace J R, Clift R. On the two-phase theory of fluidization[J]. Chemical Engineering Science, 1974, 29(2): 327-334. |
79 | 蔡平, 范良士. 气固密相流化床[M]//金涌, 祝京旭, 汪展文, 等. |
流态化工程原理. 北京: 清华大学出版社, 2001: 70-71. | |
Cai P, Fan L S. Gas-solid dense-phase fluidized beds[M]//Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles. Beijing: Tsinghua University Press, 2001: 70-71. | |
80 | Fan L S. Summary paper on fluidization and transport phenomena[J]. Powder Technology, 1996, 88(3): 245-253. |
81 | Fu Z J, Zhu J, Barghi S, et al. On the two-phase theory of fluidization for Geldart B and D particles[J]. Powder Technology, 2019, 354: 64-70. |
82 | Darton R C, Lanauze R D,Davidson J F, et al. Bubble growth due to coalescence in fluidized beds[J]. Transactions of the Institution of Chemical Engineers, 1977, 55(4): 274-280. |
83 | Orcutt J C, Carpenter B H. Bubble coalescence and the simulation of mass transport and chemical reaction in gas fluidized beds[J]. Chemical Engineering Science, 1971, 26(7): 1049-1064. |
84 | May W G. Fluidized-bed reactor studies[J]. Chemical Engineering Progress, 1959, 55(12): 49-56. |
85 | van Deemter J J. Mixing and contacting in gas-solid fluidized beds[J]. Chemical Engineering Science, 1961, 13(3): 143-154. |
86 | Kunii D, Levenspiel O. Bubbling bed model for flow of gas through a fluidized bed[J]. Industrial & Engineering Chemistry Fundamentals, 1968, 7(3): 446-452. |
87 | 袁谓康, 王静康, 费维扬, 等. 化学工程手册 [M]. 3版.北京: 化学工业出版社, 2019: 20-110. |
Yuan W K, Wang J K, Fei W Y, et al. Handbook of Chemical Engineering [M]. 3rd ed. Beijing: Chemical Industry Press, 2019: 20-110. | |
88 | Carman P C. Fluid flow through granular beds[J]. Chemical Engineering Research and Design, 1997, 75: S32-S48. |
89 | Burke S P, Plummer W B. Gas flow through packed columns[J]. Industrial & Engineering Chemistry, 1928, 20(11): 1196-1200. |
90 | Leva M. Fluidization[M]. McGraw-Hill, 1959. |
91 | Reynolds O. Papers on mechanical and physical subjects[J]. International Journal of Heat and Mass Transfer, 1969, 12(2): 129-136. |
92 | Kozeny J. Ueber kapillare Leitung des Wassers im Boden[J]. Stizungsber Akad Wiss Wien, 1927, 136: 271-306. |
93 | Ergun S. Pressure drop in blast furnace and in cupola[J]. Industrial & Engineering Chemistry, 1953, 45(2): 477-485. |
94 | Narsimhan G. On a generalized expression for prediction of minimum fluidization velocity[J]. AIChE Journal, 1965, 11(3): 550-554. |
95 | Wen C Y, Yu Y H. Mechanics of fluidization[J]. Chemical Engineering Progress, Symposium Series, 1966, 62(1): 100-111. |
96 | 祝京旭, 张辉. 流态化基础知识和流型分类[M]//金涌, 祝京旭, 汪展文, 等. |
流态化工程原理. 北京: 清华大学出版社, 2001: 20-23. | |
Zhu J X, Zhang H. Fundamentals of fluidization and classification of fluidization regimes[M]//Jin Y, Zhu J X, Wang Z W, et al. Fluidization Engineering Principles. Beijing: Tsinghua University Press, 2001: 20-23. | |
97 | 李洪钟. 流态化技术与计算机模拟[J]. 计算机与应用化学, 2008, 25(9): 1047-1052. |
Li H Z. Fluidization technology and computer simulation[J]. Computers and Applied Chemistry, 2008, 25(9): 1047-1052. | |
98 | 洪坤, 曹曼倩, 王文轩, 等. 甲醇制烯烃流化床内流化特性的多尺度CFD模拟[J]. 过程工程学报,2021,21(9):1012-1021. |
Hong K, Cao M Q, Wang W X, et al. Multi scale CFD simulation of fluidization characteristics in a fluidized bed for methanol to olefins [J]. Journal of Process Engineering,2021,21(9):1012-1021. | |
99 | Wang W, Li J H. Simulation of gas-solid two-phase flow by a multi-scale CFD approach—extension of the EMMS model to the sub-grid level[J]. Chemical Engineering Science, 2007, 62(1/2): 208-231. |
100 | 姚梅琴,岳君容,战金辉, 等. 内循环微型流化床流动特性[J]. 化工学报, 2017,68(10): 3717-3724. |
Yao M Q, Yue J R, Zhan J H, et al. Hydrodynamics of internally circulating micro fluidized bed [J]. CIESC Journal, 2017,68(10): 3717-3724.. | |
101 | 董晓赛, 孙述杰, 段振亚, 等. 流化床中气固两相流数值模拟技术研究进展[J]. 化工机械, 2021, 48(3): 326-331. |
Dong X S, Sun S J, Duan Z Y, et al. Research progress in numerical simulation technology of gas-solid flow in fluidized bed[J]. Chemical Engineering & Machinery, 2021, 48(3): 326-331. | |
102 | 张锴, Stefano Brandani. 流化床内颗粒流体两相流的CFD模拟[J]. 化工学报, 2010, 61(9): 2192-2207. |
Zhang K, Stefano B. CFD simulation of particle-fluid two-phase flow in fluidized beds[J]. CIESC Journal, 2010, 61(9): 2192-2207. | |
103 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
104 | Idol J D. Process for the manufacture of acrylonitrile: US2904580[P]. 1959-9-15. |
105 | 张沛存, 宫晓燕, 陈晓春. 丙烯腈流化床反应器性能的模拟优化[J]. 石油化工, 2009, 38(10): 1048-1053. |
Zhang P C, Gong X Y, Chen X C. Simulation and optimization of acrylonitrile fluid bed reactor[J]. Petrochemical Technology, 2009, 38(10): 1048-1053. | |
106 | 刘静, 王勤辉, 骆仲泱, 等. 600MWe超临界循环流化床锅炉的设计研究[J]. 动力工程, 2003, 23(1): 2179-2184, 2204. |
Liu J, Wang Q H, Luo Z Y, et al. Design and research on a 600MWe supercritical circulating fluidized bed boiler[J]. Power Engineering, 2003, 23(1): 2179-2184, 2204. | |
107 | 骆仲泱, 何宏舟, 王勤辉, 等. 循环流化床锅炉技术的现状及发展前景[J]. 动力工程, 2004, 24(6): 761-767. |
Luo Z Y, He H Z, Wang Q H, et al. Status quo-technology of circulating fluidized bed boiler and its prospects of development[J]. Power Engineering, 2004, 24(6): 761-767. | |
108 | 蔡润夏, 吕俊复, 凌文, 等. 超(超)临界循环流化床锅炉技术的发展[J]. 中国电力, 2016, 49(12): 1-7. |
Cai R X, Lyu J F, Ling W, et al. Progress of supercritical and ultra-supercritical circulating fluidized bed boiler technology[J]. Electric Power, 2016, 49(12): 1-7. | |
109 | 李影平. 大型循环流化床锅炉节能减排关键问题探讨[J]. 锅炉技术, 2019, 50(5): 42-46. |
Li Y P. Discussion on key problems of energy saving and emission reduction in large circulating fluidized bed boilers[J]. Boiler Technology, 2019, 50(5): 42-46. | |
110 | 王辅臣. 煤气化技术在中国: 回顾与展望[J]. 洁净煤技术, 2021, 27(1): 1-33. |
Wang F C. Coal gasification technologies in China: review and prospect[J]. Clean Coal Technology, 2021, 27(1): 1-33. | |
111 | Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
112 | Kaeding W W, Butter S A. Production of chemicals from methanol[J]. Cheminform, 1980, 61(1): 155-164. |
113 | Haag W O, Lago R M, Rodewald P G. Aromatics, light olefins and gasoline from methanol: mechanistic pathways with ZSM-5 zeolite catalyst[J]. Journal of Molecular Catalysis, 1982, 17(2/3): 161-169. |
114 | 胡浩, 应卫勇, 房鼎业. 甲醇制烯烃(MTO)多段间接换热式绝热固定床反应器的数学模拟[J]. 华东理工大学学报(自然科学版), 2010, 36(2): 180-186. |
Hu H, Ying W Y, Fang D Y. Mathematical simulation on multi-bed adiabatic reactor with indirect heat exchange for MTO reaction[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2010, 36(2): 180-186. | |
115 | 袁学民, 孙世谦, 张蒙, 等. 国内甲醇制烯烃技术最新进展[J]. 现代化工, 2012, 32(12): 29-31. |
Yuan X M, Sun S Q, Zhang M, et al. Recent domestic advances in methanol-to-olefins technology[J]. Modern Chemical Industry, 2012, 32(12): 29-31. | |
116 | MacDougall L V. Methanol to fuels routes—the achievements and remaining problems[J]. Catalysis Today, 1991, 8(3): 337-369. |
117 | Chen J Q, Vora B V, Pujadó P R, et al. Most recent developments in ethylene and propylene production from natural gas using the UOP/Hydro MTO process[J]. Studies in Surface Science and Catalysis, 2004, 147: 1-6. |
118 | 张惠明. 甲醇制低碳烯烃工艺技术新进展[J]. 化学反应工程与工艺, 2008, 24(2): 178-182. |
Zhang H M. Advances in process research of methanol to light olefins[J]. Chemical Reaction Engineering and Technology, 2008, 24(2): 178-182. | |
119 | 鞠付栋, 陈汉平, 杨海平, 等. 化工行业节能减排新技术和战略选择[J]. 化工进展, 2009, 28(S1): 1-5. |
Ju F D, Chen H P, Yang H P, et al. New technologies and strategic choices for energy conservation and emission reduction in chemical industry [J]. Chemical Industry and Engineering Progress, 2009, 28(S1): 1-5. | |
120 | 宋海民. 循环流化床锅炉对节能减排的贡献分析[J]. 科技与企业, 2014(4): 141. |
Song H M. Analysis on the contribution of circulating fluidized bed boiler to energy conservation and emission reduction [J]. Keji Yu Qiye, 2014(4): 141. | |
121 | 郭慕孙, 李洪钟. 流态化手册[M]. 北京: 化学工业出版社, 2008: 1157-1209. |
Kwauk M, Li H Z. Handbook of Fluidization[M]. Beijing: Chemical Industry Press, 2008: 1157-1209. | |
122 | 王欢, 范飞, 李鹏飞, 等. 现代煤气化技术进展及产业现状分析[J]. 煤化工, 2021, 49(4): 52-56. |
Wang H, Fan F, Li P F, et al. Modern coal gasification technology progress and industry status analysis[J]. Coal Chemical Industry, 2021, 49(4): 52-56. | |
123 | 崔普选. 煤制甲醇技术发展评述[J]. 现代化工, 2020, 40(5): 4-9. |
Cui P X. Review on development of coal-to-methanol technologies[J]. Modern Chemical Industry, 2020, 40(5): 4-9. | |
124 | 李晓宁, 封增凯, 杨波. 顺酐生产工艺路线探讨及现状分析[J]. 天津化工, 2018, 32(3): 3-5. |
Li X N, Feng Z K, Yang B. Discussion and current situation analysis of maleic anhydride production process route [J]. Tianjin Chemical Industry, 2018, 32(3): 3-5. | |
125 | 朱建君, 孙瑞, 王军峰. 正丁烷制顺酐反应技术进展[J]. 化学工程与装备, 2017(3): 163-165. |
Zhu J J, Sun R, Wang J F. Technological progress of n-butane to maleic anhydride [J]. Chemical Engineering & Equipment, 2017(3): 163-165. | |
126 | 赵锦波, 袁世岭, 蒋斌波. 正丁烷氧化制顺酐反应器技术进展[J]. 现代化工, 2016, 36(7): 47-50, 52. |
Zhao J B, Yuan S L, Jiang B B. Progress of the reactor technology for oxidation of n-butane to maleic anhydride[J]. Modern Chemical Industry, 2016, 36(7): 47-50, 52. |
[1] | 徐野, 黄文君, 米俊芃, 申川川, 金建祥. 多源信息融合的离心式压缩机喘振诊断方法[J]. 化工学报, 2023, 74(7): 2979-2987. |
[2] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[3] | 何洋, 高森虎, 吴青云, 张明理, 龙涛, 牛佩, 高景辉, 孟颖琪. 析湿工况下平直开缝翅片传热传质特性的数值研究[J]. 化工学报, 2023, 74(3): 1073-1081. |
[4] | 杜峰, 尹思琦, 罗辉, 邓文安, 李传, 黄振薇, 王文静. H2在Mo x S y 团簇上吸附解离的尺寸效应研究[J]. 化工学报, 2022, 73(9): 3895-3903. |
[5] | 王凯玥, 马永丽, 李琛, 刘明言. 气液固微型流化床的气液传质系数[J]. 化工学报, 2022, 73(8): 3529-3540. |
[6] | 俞夏琪, 冯格, 赵金燕, 李嘉远, 邓声威, 郑靖楠, 李雯雯, 王亚秋, 沈榄, 刘旭, 徐威威, 王建国, 王式彬, 姚子豪, 毛成立. 基体(TDI-TMP-T313)与氧化剂(AP)相互作用的第一性原理研究[J]. 化工学报, 2022, 73(8): 3511-3517. |
[7] | 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108. |
[8] | 赵继昊, 唐伟强, 徐小飞, 赵双良, 贺炅皓. 高分子复合材料中键合剂在不同纳米填料表面的吸附能计算[J]. 化工学报, 2022, 73(7): 3174-3181. |
[9] | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
[10] | 胡善伟, 刘新华. 气固流化系统多尺度跨流域EMMS建模[J]. 化工学报, 2022, 73(6): 2514-2528. |
[11] | 周晨阳, 贾颖, 赵跃民, 张勇, 付芝杰, 冯昱清, 段晨龙. 介尺度视角下干法重介流态化分选过程强化[J]. 化工学报, 2022, 73(6): 2452-2467. |
[12] | 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485. |
[13] | 何聪, 钟文琪, 周冠文, 陈曦. 高海拔地区水泥生料悬浮炉分解特性研究[J]. 化工学报, 2022, 73(5): 2120-2129. |
[14] | 周楠, 王簪, 邵应娟, 钟文琪. 煤沥青球气固流化磨损特性实验研究[J]. 化工学报, 2022, 73(2): 587-594. |
[15] | 魏朋, 陈珺, 王志国, 刘飞. 基于平衡理论的模拟移动床工艺参数鲁棒寻优[J]. 化工学报, 2022, 73(2): 792-800. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||