化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2468-2485.DOI: 10.11949/0438-1157.20220050
收稿日期:
2022-01-11
修回日期:
2022-03-04
出版日期:
2022-06-05
发布日期:
2022-06-30
通讯作者:
周强
作者简介:
蒋鸣(1988—),男,博士研究生,基金资助:
Ming JIANG1,2(),Qiang ZHOU1,2,3()
Received:
2022-01-11
Revised:
2022-03-04
Online:
2022-06-05
Published:
2022-06-30
Contact:
Qiang ZHOU
摘要:
气固流化床中,介于颗粒与宏观尺度间的复杂的时空多尺度结构(介尺度结构)将完全改变气固相间作用规律,加大了流态化系统调控及预测的难度。为此,需要构建考虑结构影响的相间本构关系。其中,曳力作为影响流态化动力学特征的主导因素,对其研究尤为重要。从结构产生演化的机制出发,概述结构影响曳力的机理,以模型构建流程的角度对结构和过滤两类模型进行总结,并重点综述过滤模型构建在提升准确性、有效性、通用性和考虑更多物理机制方面的最新进展。研究表明:提升模型通用性和考虑真实系统中更丰富的物理机制仍是建模中亟待解决的问题,结合结构演化机制理性建模和充分发挥机器学习数据分析处理优势或是曳力建模进一步发展的关键。
中图分类号:
蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485.
Ming JIANG, Qiang ZHOU. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds[J]. CIESC Journal, 2022, 73(6): 2468-2485.
1 | Fan L S, Zhu C. Principles of Gas-solid Flows[M]. Cambridge: Cambridge University Press, 2005. |
2 | Tian P, Wei Y X, Ye M, et al. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
3 | 任文坡, 李振宇, 李雪静, 等. 渣油深度加氢裂化技术应用现状及新进展[J]. 化工进展, 2016, 35(8): 2309-2316. |
Ren W P, Li Z Y, Li X J, et al. Application situation and new progress of residuum deep hydrocracking technologies[J]. Chemical Industry and Engineering Progress, 2016, 35(8): 2309-2316. | |
4 | 程晓磊, 张鑫. 现代煤气化技术现状及发展趋势综述[J]. 煤质技术, 2021, 36(1): 1-9. |
Cheng X L, Zhang X. Summary of present situation and development trend of modern coal gasification technology[J]. Coal Quality Technology, 2021, 36(1): 1-9. | |
5 | Du S H, Yuan S Z, Zhou Q. Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor[J]. Renewable Energy, 2021, 172: 424-439. |
6 | Xie J, Zhong W Q, Shao Y J, et al. Simulation of combustion of municipal solid waste and coal in an industrial-scale circulating fluidized bed boiler[J]. Energy & Fuels, 2017, 31(12): 14248-14261. |
7 | 任喜熙, 陈祁, 杨海平, 等. 基于CPFD方法的流化床生物质气化数值模拟[J]. 化工学报, 2020, 71(12): 5763-5773. |
Ren X X, Chen Q, Yang H P, et al. Numerical simulation of 3D fluidized bed biomass gasification based on CPFD[J]. CIESC Journal, 2020, 71(12): 5763-5773. | |
8 | Li P, Wang N N, Xu R Y, et al. Numerical study on pneumatic feeding characteristics of cold-flow fluidized bed reactor for biomass pyrolysis[J]. Powder Technology, 2021, 388: 318-332. |
9 | Fullmer W D, Hrenya C M. The clustering instability in rapid granular and gas-solid flows[J]. Annual Review of Fluid Mechanics, 2017, 49: 485-510. |
10 | Shaffer F, Gopalan B, Breault R W, et al. High speed imaging of particle flow fields in CFB risers[J]. Powder Technology, 2013, 242: 86-99. |
11 | 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度:复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620. |
Ge W, Liu X H, Ren Y, et al. From multi-scale to meso-scale: new challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620. | |
12 | 李洪钟, 郭慕孙. 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62. |
Li H Z, Kwauk M. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62. | |
13 | Sundaresan S, Ozel A, Kolehmainen J. Toward constitutive models for momentum, species, and energy transport in gas-particle flows[J]. Annual Review of Chemical and Biomolecular Engineering, 2018, 9: 61-81. |
14 | Ge W, Chang Q, Li C X, et al. Multiscale structures in particle-fluid systems: characterization, modeling, and simulation[J]. Chemical Engineering Science, 2019, 198: 198-223. |
15 | Parmentier J F, Simonin O, Delsart O. A functional subgrid drift velocity model for filtered drag prediction in dense fluidized bed[J]. AIChE Journal, 2012, 58(4): 1084-1098. |
16 | Lim K S, Zhu J X, Grace J R. Hydrodynamics of gas-solid fluidization[J]. International Journal of Multiphase Flow, 1995, 21: 141-193. |
17 | Anderson T B, Jackson R. A fluid mechanical description of fluidized beds. Equation of motion[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. |
18 | Anderson T B, Jackson R. Fluid mechanical description of fluidized beds. Stability of state of uniform fluidization[J]. Industrial & Engineering Chemistry Fundamentals, 1968, 7(1): 12-21. |
19 | Jackson R. The Dynamics of Fluidized Particles[M]. New York: Cambridge University Press, 2000. |
20 | Whitham G B. Linear and Nonlinear Waves[M]. New York: Wiley, 1974. |
21 | Derksen J J, Sundaresan S. Direct numerical simulations of dense suspensions: wave instabilities in liquid-fluidized beds[J]. Journal of Fluid Mechanics, 2007, 587: 303-336. |
22 | Batchelor G K. Secondary instability of a gas-fluidized bed[J]. Journal of Fluid Mechanics, 1993, 257: 359-371. |
23 | Glasser B J, Sundaresan S, Kevrekidis I G. From bubbles to clusters in fluidized beds[J]. Physical Review Letters, 1998, 81(9): 1849-1852. |
24 | Sundaresan S. Instabilities in fluidized beds[J]. Annual Review of Fluid Mechanics, 2003, 35: 63-88. |
25 | Brey J J, Ruiz-Montero M J, Cubero D. Origin of density clustering in a freely evolving granular gas[J]. Physical Review E, 1999, 60(3): 3150-3157. |
26 | Garzó V. Instabilities in a free granular fluid described by the Enskog equation[J]. Physical Review E, 2005, 72(2): 021106. |
27 | Goldhirsch I, Zanetti G. Clustering instability in dissipative gases[J]. Physical Review Letters, 1993, 70(11): 1619-1622. |
28 | Tan M L, Goldhirsch I. Rapid granular flows as mesoscopic systems[J]. Physical Review Letters, 1998, 81(14): 3022-3025. |
29 | Goldhirsch I. Rapid granular flows[J]. Annual Review of Fluid Mechanics, 2003, 35: 267-293. |
30 | Maxey M R. The gravitational settling of aerosol-particles in homogeneous turbulence and random flow-fields[J]. Journal of Fluid Mechanics, 1987, 174: 441-465. |
31 | Hogan R C, Cuzzi J N. Stokes and Reynolds number dependence of preferential particle concentration in simulated three-dimensional turbulence[J]. Physics of Fluids, 2001, 13(10): 2938-2945. |
32 | Balachandar S, Eaton J K. Turbulent dispersed multiphase flow[J]. Annual Review of Fluid Mechanics, 2010, 42: 111-133. |
33 | Monchaux R, Bourgoin M, Cartellier A. Analyzing preferential concentration and clustering of inertial particles in turbulence[J]. International Journal of Multiphase Flow, 2012, 40: 1-18. |
34 | Bragg A D, Ireland P J, Collins L R. Mechanisms for the clustering of inertial particles in the inertial range of isotropic turbulence[J]. Physical Review E, 2015, 92(2): 023029. |
35 | Goto S, Saito Y, Kawahara G. Hierarchy of antiparallel vortex tubes in spatially periodic turbulence at high Reynolds numbers[J]. Physical Review Fluids, 2017, 2(6): 064603. |
36 | Petersen A J, Baker L, Coletti F. Experimental study of inertial particles clustering and settling in homogeneous turbulence[J]. Journal of Fluid Mechanics, 2019, 864: 925-970. |
37 | Goto S, Vassilicos J C. Sweep-stick mechanism of heavy particle clustering in fluid turbulence[J]. Physical Review Letters, 2008, 100(5): 054503. |
38 | Bec J, Homann H, Ray S S. Gravity-driven enhancement of heavy particle clustering in turbulent flow[J]. Physical Review Letters, 2014, 112(18): 184501. |
39 | Gustavsson K, Vajedi S, Mehlig B. Clustering of particles falling in a turbulent flow[J]. Physical Review Letters, 2014, 112(21): 214501. |
40 | Falkinhoff F, Obligado M, Bourgoin M, et al. Preferential concentration of free-falling heavy particles in turbulence[J]. Physical Review Letters, 2020, 125(6): 064504. |
41 | Oka S, Goto S. Generalized sweep-stick mechanism of inertial-particle clustering in turbulence[J]. Physical Review Fluids, 2021, 6(4): 044605. |
42 | Wilkinson M, Mehlig B. Caustics in turbulent aerosols[J]. Europhysics Letters (EPL), 2005, 71(2): 186-192. |
43 | Wilkinson M, Mehlig B, Bezuglyy V. Caustic activation of rain showers[J]. Physical Review Letters, 2006, 97(4): 048501. |
44 | Gustavsson K, Mehlig B. Distribution of relative velocities in turbulent aerosols[J]. Physical Review E, 2011, 84(4): 045304. |
45 | Gustavsson K, Mehlig B. Relative velocities of inertial particles in turbulent aerosols[J]. Journal of Turbulence, 2014, 15(1): 34-69. |
46 | Ravichandran S, Govindarajan R. Caustics and clustering in the vicinity of a vortex[J]. Physics of Fluids, 2015, 27(3): 033305. |
47 | Falkovich G, Fouxon A, Stepanov M G. Acceleration of rain initiation by cloud turbulence[J]. Nature, 2002, 419(6903): 151-154. |
48 | Vreman A W, Kuerten J G M. Turbulent channel flow past a moving array of spheres[J]. Journal of Fluid Mechanics, 2018, 856: 580-632. |
49 | Fortes A F, Joseph D D, Lundgren T S. Nonlinear mechanics of fluidization of beds of spherical particles[J]. Journal of Fluid Mechanics, 1987, 177: 467-483. |
50 | Wu J, Manasseh R. Dynamics of dual-particles settling under gravity[J]. International Journal of Multiphase Flow, 1998, 24(8): 1343-1358. |
51 | Kajishima T. Influence of particle rotation on the interaction between particle clusters and particle-induced turbulence[J]. International Journal Heat and Fluid Flow, 2004, 25(5): 721-728. |
52 | Kajishima T, Takiguchi S. Interaction between particle clusters and particle-induced turbulence[J]. International Journal Heat and Fluid Flow, 2002, 23(5): 639-646. |
53 | Huisman S G, Barois T, Bourgoin M, et al. Columnar structure formation of a dilute suspension of settling spherical particles in a quiescent fluid[J]. Physical Review Fluids, 2016, 1(7): 074204. |
54 | Uhlmann M, Doychev T. Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion[J]. Journal of Fluid Mechanics, 2014, 752: 310-348. |
55 | Chouippe A, Uhlmann M. On the influence of forced homogeneous-isotropic turbulence on the settling and clustering of finite-size particles[J]. Acta Mechanica, 2019, 230(2): 387-412. |
56 | Capecelatro J, Pepiot P, Desjardins O. Numerical characterization and modeling of particle clustering in wall-bounded vertical risers[J]. Chemical Engineering Journal, 2014, 245: 295-310. |
57 | Yang K, Zhao L H, Andersson H I. Preferential particle concentration in wall-bounded turbulence with zero skin friction[J]. Physics of Fluids, 2017, 29(11): 113302. |
58 | Bragg A D, Richter D H, Wang G Q. Mechanisms governing the settling velocities and spatial distributions of inertial particles in wall-bounded turbulence[J]. Physical Review Fluids, 2021, 6(6): 064302. |
59 | Esteghamatian A, Zaki T A. The dynamics of settling particles in vertical channel flows: gravity, lift and particle clusters[J]. Journal of Fluid Mechanics, 2021, 918: A33. |
60 | Prigogine I. Introduction to Thermodynamics of Irreversible Processes[M]. 3rd ed. New York: Interscience Publishers, 1967. |
61 | Zhang C X, Qian W Z, Wei F. Instability of uniform fluidization[J]. Chemical Engineering Science, 2017, 173: 187-195. |
62 | 张晨曦, 蔡达理, 贾瞾, 等. 流化床中气固均匀分布的失稳现象[J]. 化工进展, 2019, 38(1): 155-170. |
Zhang C X, Cai D L, Jia Z, et al. Non-uniform gas solids distribution in fluidized beds[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 155-170. | |
63 | Breault R W. An analysis of clustering flows in a CFB riser[J]. Powder Technology, 2012, 220: 79-87. |
64 | Li J H, Kwauk M. Particle-fluid Two-phase Flow: the Energy-minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press, 1994. |
65 | Zhang J Y, Ge W, Li J H. Simulation of heterogeneous structures and analysis of energy consumption in particle-fluid systems with pseudo-particle modeling[J]. Chemical Engineering Science, 2005, 60(11): 3091-3099. |
66 | Cui H H, Chang Q, Chen J H, et al. PR-DNS verification of the stability condition in the EMMS model[J]. Chemical Engineering Journal, 2020, 401: 125999. |
67 | Tian Y J, Geng J W, Wang W. Structure-dependent analysis of energy dissipation in gas-solid flows: beyond nonequilibrium thermodynamics[J]. Chemical Engineering Science, 2017, 171: 271-281. |
68 | Du M J, Hu S W, Chen J H, et al. Extremum characteristics of energy consumption in fluidization analyzed by using EMMS[J]. Chemical Engineering Journal, 2018, 342: 386-394. |
69 | Zhao B D, Wang J W. Statistical foundation of EMMS-based two-fluid models for heterogeneous gas-solid flow[J]. Chemical Engineering Science, 2021, 241: 116678. |
70 | Wang J W, Zhao B D, Li J H. Toward a mesoscale-structure-based kinetic theory for heterogeneous gas-solid flow: particle velocity distribution function[J]. AIChE Journal, 2016, 62(8): 2649-2657. |
71 | Liu X W, Wang L M, Ge W. Meso-scale statistical properties of gas-solid flow — a direct numerical simulation (DNS) study[J]. AIChE Journal, 2017, 63(1): 3-14. |
72 | Zhao B D, Wang J W. Unification of particle velocity distribution functions in gas-solid flow[J]. Chemical Engineering Science, 2018, 177: 333-339. |
73 | 王婧, 王军武. 气固两相流中颗粒速度分布函数统计分析[J]. 中国粉体技术, 2018, 24(5): 1-5. |
Wang J, Wang J W. Statistics of particle velocity distribution function in gas-solid flow[J]. China Powder Science and Technology, 2018, 24(5): 1-5. | |
74 | McKeen T, Pugsley T. Simulation and experimental validation of a freely bubbling bed of FCC catalyst[J]. Powder Technology, 2003, 129(1/2/3): 139-152. |
75 | Fullmer W D, Liu G D, Yin X L, et al. Clustering instabilities in sedimenting fluid-solid systems: critical assessment of kinetic-theory-based predictions using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2017, 823: 433-469. |
76 | Chen X, Song N, Jiang M, et al. A microscopic gas-solid drag model considering the effect of interface between dilute and dense phases[J]. International Journal of Multiphase Flow, 2020, 128: 103266. |
77 | Cahyadi A, Anantharaman A, Yang S L, et al. Review of cluster characteristics in circulating fluidized bed (CFB) risers[J]. Chemical Engineering Science, 2017, 158: 70-95. |
78 | Liu X W, Ge W, Wang L M. Scale and structure dependent drag in gas-solid flows[J]. AIChE Journal, 2020, 66(4): e16883. |
79 | Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 48(2): 89-94. |
80 | Wen C Y. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111. |
81 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. Boston: Academic Press, 1994. |
82 | Beetstra R, van der Hoef M A, Kuipers J A M. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres[J]. AIChE Journal, 2007, 53(2): 489-501. |
83 | Agrawal K, Loezos P N, Syamlal M, et al. The role of meso-scale structures in rapid gas-solid flows[J]. Journal of Fluid Mechanics, 2001, 445: 151-185. |
84 | Igci Y, Andrews A T I, Sundaresan S, et al. Filtered two-fluid models for fluidized gas-particle suspensions[J]. AIChE Journal, 2008, 54(6): 1431-1448. |
85 | Ozel A, Fede P, Simonin O. Development of filtered Euler-Euler two-phase model for circulating fluidised bed: high resolution simulation, formulation and a priori analyses[J]. International Journal of Multiphase Flow, 2013, 55: 43-63. |
86 | Wang S Y, Shen Z H, Lu H L, et al. Numerical predictions of flow behavior and cluster size of particles in riser with particle rotation model and cluster-based approach[J]. Chemical Engineering Science, 2008, 63(16): 4116-4125. |
87 | Zou L M, Guo Y C, Chan C K. Cluster-based drag coefficient model for simulating gas-solid flow in a fast-fluidized bed[J]. Chemical Engineering Science, 2008, 63(4): 1052-1061. |
88 | Syamlal M, O'brien T J. The derivation of a drag coefficient from velocity-voidage correlations[R]. Morgantown: US Department of Energy, Office of Fossil Energy, 1987. |
89 | Niewland J J, Huizenga P, Kuipers J A M, et al. Hydrodynamic modelling of circulating fluidised beds[J]. Chemical Engineering Science, 1994, 49(24): 5803-5811. |
90 | Gao J S, Lan X Y, Fan Y P, et al. CFD modeling and validation of the turbulent fluidized bed of FCC particles[J]. AIChE Journal, 2009, 55(7): 1680-1694. |
91 | 严超宇, 卢春喜, 王德武, 等. 气-固环流反应器内瞬态流体力学特性的数值模拟[J]. 化工学报, 2010, 61(9): 2225-2234. |
Yan C Y, Lu C X, Wang D W, et al. Numerical simulation of transient hydrodynamics in gas-solid airlift loop reactor[J]. CIESC Journal, 2010, 61(9): 2225-2234. | |
92 | Wu Y Y, Shi X G, Gao J S, et al. A four-zone drag model based on cluster for simulating gas-solids flow in turbulent fluidized beds[J]. Chemical Engineering and Processing - Process Intensification, 2020, 155: 108056. |
93 | Syamlal M, O'brien T J. Simulation of granular layer inversion in liquid fluidized-beds[J]. International Journal of Multiphase Flow, 1988, 14(4): 473-481. |
94 | Syamlal M, O'brien T J. Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed[J]. AIChE Journal, 2003, 49(11): 2793-2801. |
95 | Zimmermann S, Taghipour F. CFD modeling of the hydrodynamics and reaction kinetics of FCC fluidized-bed reactors[J]. Industrial & Engineering Chemistry Research, 2005, 44(26): 9818-9827. |
96 | Almuttahar A, Taghipour F. Computational fluid dynamics of high density circulating fluidized bed riser: study of modeling parameters[J]. Powder Technology, 2008, 185(1): 11-23. |
97 | Almuttahar A, Taghipour F. Computational fluid dynamics of a circulating fluidized bed under various fluidization conditions[J]. Chemical Engineering Science, 2008, 63(6): 1696-1709. |
98 | Vejahati F, Mahinpey N, Ellis N, et al. CFD simulation of gas-solid bubbling fluidized bed: a new method for adjusting drag law[J]. The Canadian Journal of Chemical Engineering, 2009, 87(1): 19-30. |
99 | Lu L Q, Benyahia S, Li T W. An efficient and reliable predictive method for fluidized bed simulation[J]. AIChE Journal, 2017, 63(12): 5320-5334. |
100 | 肖海涛, 祁海鹰, 由长福, 等. 循环流化床气固曳力模型[J]. 计算物理, 2003, 20(1): 25-30. |
Xiao H T, Qi H Y, You C F, et al. Theoretical model of drag between gas and solid phase in circulating fluidized bed[J]. Chinese Journal of Computation Physics, 2003, 20(1): 25-30. | |
101 | Yang N, Wang W, Ge W, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80. |
102 | Yang N, Wang W, Ge W, et al. Simulation of heterogeneous structure in a circulating fluidized-bed riser by combining the two-fluid model with the EMMS approach[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5548-5561. |
103 | 李飞, 陈程, 王锦生, 等. 稠密气固两相QL-EMMS曳力模型及改进[J]. 工程热物理学报, 2011, 32(1): 75-79. |
Li F, Chen C, Wang J S, et al. QL-EMMS drag model & its revision for fluidized dense gas-solid two-phase flow[J]. Journal of Engineering Thermophysics, 2011, 32(1): 75-79. | |
104 | 陈程, 祁海鹰. EMMS曳力模型及其颗粒团模型的构建和检验[J]. 化工学报, 2014, 65(6): 2003-2012. |
Chen C, Qi H Y. Development and validation of cluster and EMMS drag model[J]. CIESC Journal, 2014, 65(6): 2003-2012. | |
105 | 戴群特, 时凯, 祁海鹰. 基于介尺度特性分析的流态化过程数值方法[J]. 煤炭学报, 2016, 41(10): 2508-2513. |
Dai Q T, Shi K, Qi H Y. Research progress of simulation methods of fluidization process in CFB based on meso-scale characteristics analysis[J]. Journal of China Coal Society, 2016, 41(10): 2508-2513. | |
106 | Hu S W, Liu X H. A simple and general sub-grid drag model for gas-solid fast fluidization[J]. Chemical Engineering Journal, 2021, 421: 129922. |
107 | Jiang X X, Li D, Wang S Y, et al. Clusters intermittent simulations using dynamic cluster structure-dependent drag model in gas-particles risers[J]. Chemical Engineering Science, 2020, 221: 115643. |
108 | Shi Z S, Wang W, Li J H. A bubble-based EMMS model for gas-solid bubbling fluidization[J]. Chemical Engineering Science, 2011, 66(22): 5541-5555. |
109 | Du S H, Liu L J. Numerical simulation of bubbling fluidization using a local bubble-structure-dependent drag model[J]. The Canadian Journal of Chemical Engineering, 2019, 97: 1741-1755. |
110 | 佟颖, Nouman Ahmad, 鲁波娜, 等. 基于EMMS介尺度模型的双分散鼓泡流化床的模拟[J]. 化工学报, 2019, 70(5): 1682-1692. |
Tong Y, Nouman A, Lu B N, et al. Numerical investigation of bubbling fluidized bed with binary particle mixture using EMMS mesoscale drag model[J]. CIESC Journal, 2019, 70(5): 1682-1692. | |
111 | Qin Z Y, Zhou Q, Wang J W. An EMMS drag model for coarse grid simulation of polydisperse gas-solid flow in circulating fluidized bed risers[J]. Chemical Engineering Science, 2019, 207: 358-378. |
112 | Du S H, Liu L J. A bubble structure dependent drag model for CFD simulation of bi-disperse gas-solid flow in bubbling fluidizations[J]. Canadian Journal of Chemical Engineering, 2021, 99(12): 2771-2788. |
113 | Hu S W, Liu X H. A CFD-PBM-EMMS integrated model applicable for heterogeneous gas-solid flow[J]. Chemical Engineering Journal, 2020, 383: 123122. |
114 | 王维, 洪坤, 鲁波娜, 等. 流态化模拟:基于介尺度结构的多尺度CFD[J]. 化工学报, 2013, 64(1): 95-106. |
Wang W, Hong K, Lu B N, et al. Fluidized bed simulation: structure-dependent multiscale CFD[J]. CIESC Journal, 2013, 64(1): 95-106. | |
115 | 祁海鹰, 戴群特, 陈程. 大型流态化多相流数值模拟的关键科学问题: 曳力模型的理论分析[J]. 力学与实践, 2014, 36(3): 269-277. |
Qi H Y, Dai Q T, Chen C. The key scientific problems in the eulerian modeling of large-scale multi-phase flows—drag model[J]. Mechanics in Engineering, 2014, 36(3): 269-277. | |
116 | Wang W, Chen Y. Mesoscale modeling: beyond local equilibrium assumption for multiphase flow[M]//Advances in Chemical Engineering. New York: Academic Press, 2015: 193-277. |
117 | Wang J W. Continuum theory for dense gas-solid flow: a state-of-the-art review[J]. Chemical Engineering Science, 2020, 215: 115428. |
118 | Zhou Q, Wang J W, Li J H. Three-dimensional simulation of dense suspension upflow regime in high-density CFB risers with EMMS-based two-fluid model[J]. Chemical Engineering Science, 2014, 107: 206-217. |
119 | Adnan M, Sun J, Ahmad N, et al. Verification and validation of the DDPM-EMMS model for numerical simulations of bubbling, turbulent and circulating fluidized beds[J]. Powder Technology, 2021, 379: 69-88. |
120 | Lu B N, Niu Y, Chen F G, et al. Energy-minimization multiscale based mesoscale modeling and applications in gas-fluidized catalytic reactors[J]. Reviews in Chemical Engineering, 2019, 35(8): 879-915. |
121 | Capecelatro J, Desjardins O, Fox R O. On fluid-particle dynamics in fully developed cluster-induced turbulence[J]. Journal of Fluid Mechanics, 2015, 780: 578-635. |
122 | Schneiderbauer S. A spatially-averaged two-fluid model for dense large-scale gas-solid flows[J]. AIChE Journal, 2017, 63(8): 3544-3562. |
123 | Schneiderbauer S, Pirker S. Filtered and heterogeneity-based subgrid modifications for gas-solid drag and solid stresses in bubbling fluidized beds[J]. AIChE Journal, 2014, 60(3): 839-854. |
124 | Radl S, Sundaresan S. A drag model for filtered Euler-Lagrange simulations of clustered gas-particle suspensions[J]. Chemical Engineering Science, 2014, 117: 416-425. |
125 | Ozel A, Kolehmainen J, Radl S, et al. Fluid and particle coarsening of drag force for discrete-parcel approach[J]. Chemical Engineering Science, 2016, 155: 258-267. |
126 | Lei H, Liao J W, Zhu L T, et al. CFD-DEM modeling of filtered fluid-particle drag and heat transfer in bidisperse gas-solid flows[J]. Chemical Engineering Science, 2021, 246: 116896. |
127 | Rubinstein G J, Ozel A, Yin X L, et al. Lattice Boltzmann simulations of low-Reynolds-number flows past fluidized spheres: effect of inhomogeneities on the drag force[J]. Journal of Fluid Mechanics, 2017, 833: 599-630. |
128 | Fullmer W D, Hrenya C M. Quantitative assessment of fine-grid kinetic-theory-based predictions of mean-slip in unbounded fluidization[J]. AIChE Journal, 2016, 62(1): 11-17. |
129 | Lu L Q, Liu X W, Li T W, et al. Assessing the capability of continuum and discrete particle methods to simulate gas-solids flow using DNS predictions as a benchmark[J]. Powder Technology, 2017, 321: 301-309. |
130 | Hrenya C M, Galvin J E, Wildman R D. Evidence of higher-order effects in thermally driven rapid granular flows[J]. Journal of Fluid Mechanics, 2008, 598: 429-450. |
131 | Cloete J H, Cloete S, Municchi F, et al. The sensitivity of filtered two fluid model to the underlying resolved simulation setup[J]. Powder Technology, 2017, 316: 265-277. |
132 | Zhu L T, Chen X Z, Luo Z H. Analysis and development of homogeneous drag closure for filtered mesoscale modeling of fluidized gas-particle flows[J]. Chemical Engineering Science, 2021, 229: 116147. |
133 | Sarkar A, Milioli F E, Ozarkar S, et al. Filtered sub-grid constitutive models for fluidized gas-particle flows constructed from 3-D simulations[J]. Chemical Engineering Science, 2016, 152: 443-456. |
134 | Cloete J H, Cloete S, Municchi F, et al. Development and verification of anisotropic drag closures for filtered two fluid models[J]. Chemical Engineering Science, 2018, 192: 930-954. |
135 | Milioli C C, Milioli F E, Holloway W, et al. Filtered two-fluid models of fluidized gas-particle flows: new constitutive relations[J]. AIChE Journal, 2013, 59(9): 3265-3275. |
136 | Jiang M, Zhang Y, Yu Y X, et al. A scale-independent modeling method for filtered drag in fluidized gas-particle flows[J]. Powder Technology, 2021, 394: 1050-1076. |
137 | Zhang D Z, Vanderheyden W B. The effects of mesoscale structures on the macroscopic momentum equations for two-phase flows[J]. International Journal of Multiphase Flow, 2002, 28(5): 805-822. |
138 | de Wilde J. Reformulating and quantifying the generalized added mass in filtered gas-solid flow models[J]. Physics of Fluids, 2005, 17(11): 113304. |
139 | de Wilde J. The generalized added mass revised[J]. Physics of Fluids, 2007, 19(5): 058103. |
140 | Rauchenzauner S, Schneiderbauer S. A dynamic anisotropic spatially-averaged two-fluid model for moderately dense gas-particle flows[J]. International Journal of Multiphase Flow, 2020, 126: 103237. |
141 | Rauchenzauner S, Schneiderbauer S. A dynamic multiphase turbulence model for coarse-grid simulations of fluidized gas-particle suspensions[J]. Chemical Engineering Science, 2022, 247: 117104. |
142 | Cloete J H, Cloete S, Radl S, et al. On the choice of closure complexity in anisotropic drag closures for filtered two fluid models[J]. Chemical Engineering Science, 2019, 207: 379-396. |
143 | Ozel A, Gu Y L, Milioli C C, et al. Towards filtered drag force model for non-cohesive and cohesive particle-gas flows[J]. Physics of Fluids, 2017, 29(10): 103308. |
144 | Hrenya C M, Sinclair J L. Effects of particle-phase turbulence in gas-solid flows[J]. AIChE Journal, 1997, 43(4): 853-869. |
145 | Jiang Y D, Kolehmainen J, Gu Y L, et al. Neural-network-based filtered drag model for gas-particle flows[J]. Powder Technology, 2019, 346: 403-413. |
146 | Jiang M, Chen X, Zhou Q. A gas pressure gradient-dependent subgrid drift velocity model for drag prediction in fluidized gas-particle flows[J]. AIChE Journal, 2020, 66(4): e16884. |
147 | Zhang Y, Jiang M, Chen X, et al. Modeling of the filtered drag force in gas-solid flows via a deep learning approach[J]. Chemical Engineering Science, 2020, 225: 115835. |
148 | Jiang Y D, Chen X, Kolehmainen J, et al. Development of data-driven filtered drag model for industrial-scale fluidized beds[J]. Chemical Engineering Science, 2021, 230: 116235. |
149 | Ouyang B, Zhu L T, Su Y H, et al. A hybrid mesoscale closure combining CFD and deep learning for coarse-grid prediction of gas-particle flow dynamics[J]. Chemical Engineering Science, 2022, 248: 117268. |
150 | Zhu L T, Tang J X, Luo Z H. Machine learning to assist filtered two-fluid model development for dense gas-particle flows[J]. AIChE Journal, 2020, 66(6): e16973. |
151 | Zhu L T, Ouyang B, Lei H, et al. Conventional and data-driven modeling of filtered drag, heat transfer, and reaction rate in gas-particle flows[J]. AIChE Journal, 2021, 67(8): e17299. |
152 | 朱礼涛, 欧阳博, 张希宝, 等. 机器学习在多相反应器中的应用进展[J]. 化工进展, 2021, 40(4): 1699-1714. |
Zhu L T, Ouyang B, Zhang X B, et al. Progress on application of machine learning to multiphase reactors[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1699-1714. | |
153 | Schneiderbauer S, Saeedipour M. Approximate deconvolution model for the simulation of turbulent gas-solid flows: an a priori analysis[J]. Physics of Fluids, 2018, 30(2): 023301. |
154 | Schneiderbauer S, Saeedipour M. Numerical simulation of turbulent gas-solid flow using an approximate deconvolution model[J]. International Journal of Multiphase Flow, 2019, 114: 287-302. |
155 | van der Hoef M A, van Sint Annaland M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy[J]. Annual Review of Fluid Mechanics, 2008, 40: 47-70. |
156 | Subramaniam S. Lagrangian-Eulerian methods for multiphase flows[J]. Progress Energy Combustion Science, 2013, 39(2/3): 215-245. |
157 | Capecelatro J, Desjardins O, Fox R O. Numerical study of collisional particle dynamics in cluster-induced turbulence[J]. Journal of Fluid Mechanics, 2014, 747: R2. |
158 | Mouallem J, Chavez-Cussy N, Niaki S R A, et al. On the effects of the flow macro-scale over meso-scale filtered parameters in gas-solid riser flows[J]. Chemical Engineering Science, 2018, 182: 200-211. |
159 | Niaki S R A, Mouallem J, Chavez-Cussy N, et al. Improving the accuracy of two-fluid sub-grid modeling of dense gas-solid fluidized flows[J]. Chemical Engineering Science, 2021, 229: 116021. |
160 | Huang Z Q, Zhang C, Jiang M, et al. Development of a filtered interphase heat transfer model based on fine-grid simulations of gas-solid flows[J]. AIChE Journal, 2020, 66(1): e16755. |
161 | Igci Y, Sundaresan S. Verification of filtered two-fluid models for gas-particle flows in risers[J]. AIChE Journal, 2011, 57(10): 2691-2707. |
162 | Andrews A T, Loezos P N, Sundaresan S. Coarse-grid simulation of gas-particle flows in vertical risers[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6022-6037. |
163 | Gao X, Li T W, Sarkar A, et al. Development and validation of an enhanced filtered drag model for simulating gas-solid fluidization of Geldart A particles in all flow regimes[J]. Chemical Engineering Science, 2018, 184: 33-51. |
164 | Zhu L T, Liu Y X, Tang J X, et al. A material-property-dependent sub-grid drag model for coarse-grained simulation of 3D large-scale CFB risers[J]. Chemical Engineering Science, 2019, 204: 228-245. |
165 | Zhu L T, Yang Y N, Pan D T, et al. Capability assessment of coarse-grid simulation of gas-particle riser flow using sub-grid drag closures[J]. Chemical Engineering Science, 2020, 213: 115410. |
166 | Bassenne M, Moin P, Urzay J. Wavelet multiresolution analysis of particle-laden turbulence[J]. Physical Review Fluids, 2018, 3(8): 084304. |
167 | Gao X, Li T W, Rogers W A. Assessment of mesoscale solid stress in coarse-grid TFM simulation of Geldart A particles in all fluidization regimes[J]. AIChE Journal, 2018, 64(10): 3565-3581. |
168 | Wei F, Lin H F, Cheng Y, et al. Profiles of particle velocity and solids fraction in a high-density riser[J]. Powder Technology, 1998, 100(2/3): 183-189. |
169 | Holloway W, Yin X L, Sundaresan S. Fluid-particle drag in inertial polydisperse gas-solid suspensions[J]. AIChE Journal, 2010, 56(8): 1995-2004. |
170 | Sarkar A, Sun X, Sundaresan S. Sub-grid drag models for horizontal cylinder arrays immersed in gas-particle multiphase flows[J]. Chemical Engineering Science, 2013, 104: 399-412. |
171 | Lu B, Wang W, Li J H, et al. Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5487-5494. |
172 | 鲁波娜, 程从礼, 鲁维民, 等. 基于多尺度模型的MIP提升管反应历程数值模拟[J]. 化工学报, 2013, 64(6): 1983-1992. |
Lu B N, Cheng C L, Lu W M, et al. Numerical simulation of reaction process in MIP riser based on multi-scale model[J]. CIESC Journal, 2013, 64(6): 1983-1992. | |
173 | 刘雅宁, 鲁波娜, 卢利强, 等. 基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟[J]. 化工学报, 2015, 66(8): 2911-2919. |
Liu Y N, Lu B N, Lu L Q, et al. EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators[J]. CIESC Journal, 2015, 66(8): 2911-2919. | |
174 | Lu B N, Luo H, Li H, et al. Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model[J]. Chemical Engineering Science, 2016, 143: 341-350. |
175 | Lu B N, Zhang J Y, Luo H, et al. Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors[J]. Chemical Engineering Science, 2017, 171: 244-255. |
176 | Liu X C, Xu J, Ge W, et al. Long-time simulation of catalytic MTO reaction in a fluidized bed reactor with a coarse-grained discrete particle method—EMMS-DPM[J]. Chemical Engineering Journal, 2020, 389: 124135. |
177 | 洪坤, 曹曼倩, 王文轩, 等. 甲醇制烯烃流化床内流化特性的多尺度CFD模拟[J]. 过程工程学报, 2021, 21(9): 1012-1021. |
Hong K, Cao M Q, Wang W X, et al. Multi-scale CFD simulation of fluidization characteristics in a methanolto-olefin fluidized bed[J]. The Chinese Journal of Process Engineering, 2021, 21(9): 1012-1021. | |
178 | Liu Y, Huo P J, Li X H, et al. Numerical study of coal gasification in a dual-CFB plant based on the generalized drag model QC-EMMS[J]. Fuel Processing Technology, 2020, 203: 106363. |
179 | Liu Y, Huo P J, Li X H, et al. Numerical analysis of the operating characteristics of a large-scale CFB coal-gasification reactor with the QC-EMMS drag model[J]. The Canadian Journal of Chemical Engineering, 2021, 99(6): 1390-1403. |
180 | Nikolopoulos A, Stroh A, Zeneli M, et al. Numerical investigation and comparison of coarse grain CFD-DEM and TFM in the case of a 1 MWth fluidized bed carbonator simulation[J]. Chemical Engineering Science, 2017, 163: 189-205. |
181 | Tu Q Y, Wang H G. CPFD study of a full-loop three-dimensional pilot-scale circulating fluidized bed based on EMMS drag model[J]. Powder Technology, 2018, 323: 534-547. |
182 | Schneiderbauer S, Puttinger S, Pirker S, et al. CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors[J]. Chemical Engineering Journal, 2015, 264: 99-112. |
183 | Kraft S, Kirnbauer F, Hofbauer H. CPFD simulations of an industrial-sized dual fluidized bed steam gasification system of biomass with 8 MW fuel input[J]. Applied Energy, 2017, 190: 408-420. |
184 | Luo H, Lin W G, Song W L, et al. Three dimensional full-loop CFD simulation of hydrodynamics in a pilot scale dual fluidized bed system for biomass gasification[J]. Fuel Processing Technology, 2019, 195: 106146. |
185 | Yu J, Gao X, Lu L Q, et al. Validation of a filtered drag model for solid residence time distribution (RTD) prediction in a pilot-scale FCC riser[J]. Powder Technology, 2021, 378: 339-347. |
186 | Yu W C, Fede P, Yazdanpanah M, et al. Gas-solid fluidized bed simulations using the filtered approach: validation against pilot-scale experiments[J]. Chemical Engineering Science, 2020, 217: 115472. |
187 | Schneiderbauer S, Kinaci M E, Hauzenberger F. Computational fluid dynamics simulation of iron ore reduction in industrial-scale fluidized beds[J]. Steel Research International, 2020, 91(12): 2000322. |
[1] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[2] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[5] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[13] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[14] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[15] | 刘道银, 陈柄岐, 张祖扬, 吴琰. 颗粒聚团结构对曳力特性影响的数值模拟[J]. 化工学报, 2023, 74(6): 2351-2362. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||