化工学报 ›› 2022, Vol. 73 ›› Issue (1): 110-121.DOI: 10.11949/0438-1157.20211464
朱振林1,2(),王松林1,3(),姜冰雪1,李家旭1,3(),邓维1,吴海强1,3,杨轩1,2,刘平伟1,2,王文俊1,2()
收稿日期:
2021-10-13
修回日期:
2021-11-25
出版日期:
2022-01-05
发布日期:
2022-01-18
通讯作者:
李家旭,王文俊
作者简介:
朱振林(1992—),男,硕士研究生,基金资助:
Zhenlin ZHU1,2(),Songlin WANG1,3(),Bingxue JIANG1,Jiaxu LI1,3(),Wei DENG1,Haiqiang WU1,3,Xuan YANG1,2,Pingwei LIU1,2,Wenjun WANG1,2()
Received:
2021-10-13
Revised:
2021-11-25
Online:
2022-01-05
Published:
2022-01-18
Contact:
Jiaxu LI,Wenjun WANG
摘要:
塑料“白色污染”越来越引起人们的广泛关注,在自然界微生物的作用下能降解成为二氧化碳、水和无机物的生物降解材料是解决问题的一种有效途径。新型生物降解聚酯的开发离不开对材料生物降解性能的研究和评价方法的开发,为此,本文评述了生物降解聚酯的类型及其生物降解性能、聚酯降解微生物与酶的研究进展,介绍了土壤、堆肥和水体环境中的材料生物降解性评价方法。可以看到低成本、高性能是生物降解聚酯的发展方向;现有聚酯降解微生物和酶尚不能满足聚酯工业回收应用要求,需开发更高效、更稳定的酶;目前生物降解评价方法受接种环境影响大、评价周期长且难完全模拟材料在自然环境中生物降解行为,新型生物降解聚酯的开发也亟需可靠、快速的降解评价方法。
中图分类号:
朱振林, 王松林, 姜冰雪, 李家旭, 邓维, 吴海强, 杨轩, 刘平伟, 王文俊. 聚酯生物降解及评价方法研究[J]. 化工学报, 2022, 73(1): 110-121.
Zhenlin ZHU, Songlin WANG, Bingxue JIANG, Jiaxu LI, Wei DENG, Haiqiang WU, Xuan YANG, Pingwei LIU, Wenjun WANG. Study on biodegradation of polyesters and their evaluation methods[J]. CIESC Journal, 2022, 73(1): 110-121.
1 | de Souza Machado A A, Kloas W, Zarfl C, et al. Microplastics as an emerging threat to terrestrial ecosystems [J]. Global Change Biology, 2018, 24(4): 1405-1416. |
2 | 王松林, 吴海强, 姜冰雪, 等. 聚酯链结构定制及其构效关系[J]. 化工学报, 2021, 72(2): 852-862. |
Wang S L, Wu H Q, Jiang B X, et al. Tailoring chain structures of polyesters and their effect on physical and degradation properties[J]. CIESC Journal, 2021, 72(2): 852-862. | |
3 | Taniguchi I, Yoshida S, Hiraga K, et al. Biodegradation of PET: current status and application aspects[J]. ACS Catalysis, 2019, 9(5): 4089-4105. |
4 | Ivar do Sul J A, Costa M F. The present and future of microplastic pollution in the marine environment[J]. Environmental Pollution, 2014, 185: 352-364. |
5 | Rujnić-Sokele M, Pilipović A. Challenges and opportunities of biodegradable plastics: a mini review[J]. Waste Management & Research, 2017, 35(2): 132-140. |
6 | Carothers W H, Dorough G L, van Natta F J. Studies of polymerization and ring formation(Ⅹ): The reversible polymerization of six-membered cyclic esters[J]. Journal of the American Chemical Society, 1932, 54(2): 761-772. |
7 | 范森. 聚乳酸材料在不同土壤环境中降解性能研究及菌群结构分析[D]. 广州: 华南理工大学, 2017. |
Fan S. Pyrosequencing analysis of soil microbial diversity and structure after polylactic acid degradation in different soil environments[D]. Guangzhou: South China University of Technology, 2017. | |
8 | Iozzino V, Speranza V, Pantani R. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)[J]. AIP Conference Proceedings, 2015, 1695(1): 020063. |
9 | 郑霞, 李新功, 吴义强. 聚乳酸自然降解性能[J]. 功能材料, 2014, 45(14): 14099-14102, 14107. |
Zheng X, Li X G, Wu Y Q. Natural degradation properties of polylactic acid[J]. Journal of Functional Materials, 2014, 45(14): 14099-14102, 14107. | |
10 | Sedničková M, Pekařová S, Kucharczyk P, et al. Changes of physical properties of PLA-based blends during early stage of biodegradation in compost[J]. International Journal of Biological Macromolecules, 2018, 113: 434-442. |
11 | Stloukal P, Pekařová S, Kalendova A, et al. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process[J]. Waste Management (New York, N.Y.), 2015, 42: 31-40. |
12 | Dawes E A, Senior P J. The role and regulation of energy reserve polymers in micro-organisms[M]//Advances in Microbial Physiology. Vol 10. Amsterdam: Elsevier, 1973: 135-266. |
13 | Roohi, Bano K, Kuddus M, et al. Microbial enzymatic degradation of biodegradable plastics[J]. Current Pharmaceutical Biotechnology, 2017, 18(5): 429-440. |
14 | Mergaert J, Anderson C, Wouters A, et al. Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in compost[J]. Journal of Environmental Polymer Degradation, 1994, 2(3): 177-183. |
15 | Woolnough C A, Yee L H, Charlton T, et al. Environmental degradation and biofouling of ‘green’plastics including short and medium chain length polyhydroxyalkanoates[J]. Polymer International, 2010, 59(5): 658-667. |
16 | Saad G R, Khalil T M, Sabaa M W. Photo-and bio-degradation of poly(ester-urethane)s films based on poly[(R)-3-hydroxybutyrate] and poly(ε-caprolactone) blocks[J]. Journal of Polymer Research, 2009, 17(1): 33-42. |
17 | Shah A A, Kato S, Shintani N, et al. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters[J]. Applied Microbiology and Biotechnology, 2014, 98(8): 3437-3447. |
18 | Weng Y X, Jin Y J, Meng Q Y, et al. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions[J]. Polymer Testing, 2013, 32(5): 918-926. |
19 | Tokiwa Y, Suzuki T. Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase[J]. Journal of Applied Polymer Science, 1981, 26(2): 441-448. |
20 | Müller R J, Kleeberg I, Deckwer W D. Biodegradation of polyesters containing aromatic constituents[J]. Journal of Biotechnology, 2001, 86(2): 87-95. |
21 | Kijchavengkul T, Auras R, Rubino M, et al. Biodegradation and hydrolysis rate of aliphatic aromatic polyester[J]. Polymer Degradation and Stability, 2010, 95(12): 2641-2647. |
22 | Witt U, Einig T, Yamamoto M, et al. Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates[J]. Chemosphere, 2001, 44(2): 289-299. |
23 | Loos K, Zhang R, Pereira I, et al. A perspective on PEF synthesis, properties, and end-life[J]. Frontiers in Chemistry, 2020, 8: 585. |
24 | Gruter G J. Technology and Markets Day: Path to the Future[R/OL]. [2021-09-25]. . |
25 | Austin H P, Allen M D, Donohoe B S, et al. Characterization and engineering of a plastic-degrading aromatic polyesterase[J]. PNAS, 2018, 115(19): E4350-E4357. |
26 | Pellis A, Haernvall K, Pichler C M, et al. Enzymatic hydrolysis of poly(ethylene furanoate)[J]. Journal of Biotechnology, 2016, 235: 47-53. |
27 | 彭双宝, 吴彬霜, 吴林波, 等. 生物基呋喃二甲酸共聚酯的合成及生物降解性研究[C]//2015年全国高分子学术论文报告会论文集. 苏州, 2015: 60. |
Peng S B, Wu B S, Wu L B, et al. Synthesis and biodegradability of biobased furarate copolyester [C]// 2015 National Polymer Academic Papers Report Conference Abstract Set Topic B. Biomacromolecule. Suzhou, 2015: 60. | |
28 | Sugimoto H, Inoue S. Copolymerization of carbon dioxide and epoxide[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2004, 42(22): 5561-5573. |
29 | 桑练勇, 晏华, 代军, 等. 聚碳酸亚丙酯/聚乳酸共混物性能研究进展[J]. 中国塑料, 2018, 32(1): 7-14. |
Sang L Y, Yan H, Dai J, et al. Research progress in poly(propylene carbonate)/poly(lactic acid) blends[J]. China Plastics, 2018, 32(1): 7-14. | |
30 | 王淑芳, 陶剑, 郭天瑛, 等. 脂肪族聚碳酸酯(PPC)与聚乳酸(PLA)共混型生物降解材料的热学性能、力学性能和生物降解性研究[J]. 离子交换与吸附, 2007, 23(1): 1-9. |
Wang S F, Tao J, Guo T Y, et al. Thermal characteristics, mechanical properties and biodegradability of polycarbonates/poly(lactic acid) (PPC/PLA) blends[J]. Ion Exchange and Adsorption, 2007, 23(1): 1-9. | |
31 | 张亚男, 林强. 可降解聚碳酸亚丙酯复合材料的性能[J]. 精细化工, 2010, 27(6): 529-531, 548. |
Zhang Y N, Lin Q. Properties of degradablepolypropylene carbonate compostie materials[J]. Fine Chemicals, 2010, 27(6): 529-531, 548. | |
32 | 宋鑫月, 朱光明, 王宗瑶, 等. 聚己内酯的制备及改性研究进展[J]. 中国胶粘剂, 2016, 25(4): 52-56. |
Song X Y, Zhu G M, Wang Z Y, et al. Research progress of preparation and modification of polycaprolactone[J]. China Adhesives, 2016, 25(4): 52-56. | |
33 | Woodruff M A, Hutmacher D W. The return of a forgotten polymer—polycaprolactone in the 21st century[J]. Progress in Polymer Science, 2010, 35(10): 1217-1256. |
34 | César M E F, Mariani P D S C, Innocentini-Mei L H, et al. Particle size and concentration of poly(ɛ-caprolactone) and adipate modified starch blend on mineralization in soils with differing textures[J]. Polymer Testing, 2009, 28(7): 680-687. |
35 | Tokiwa Y, Calabia B, Ugwu C, et al. Biodegradability of plastics[J]. International Journal of Molecular Sciences, 2009, 10(9): 3722-3742. |
36 | Shah A A, Hasan F, Hameed A, et al. Biological degradation of plastics: a comprehensive review[J]. Biotechnology Advances, 2008, 26(3): 246-265. |
37 | Yoshida S, Hiraga K, Takehana T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199. |
38 | Müller R J, Schrader H, Profe J, et al. Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca[J]. Macromolecular Rapid Communications, 2005, 26(17): 1400-1405. |
39 | Eberl A, Heumann S, Brückner T, et al. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules[J]. Journal of Biotechnology, 2009, 143(3): 207-212. |
40 | Silva C, Da S, Silva N, et al. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates[J]. Biotechnology Journal, 2011, 6(10): 1230-1239. |
41 | Chen S, Tong X, Woodard R W, et al. Identification and characterization of bacterial cutinase[J]. Journal of Biological Chemistry, 2008, 283(38): 25854-25862. |
42 | Martínez V, Santos P G, García-Hidalgo J, et al. Novel extracellular medium-chain-length polyhydroxyalkanoate depolymerase from Streptomyces exfoliatus K10 DSMZ 41693: a promising biocatalyst for the efficient degradation of natural and functionalized mcl-PHAs[J]. Applied Microbiology and Biotechnology, 2015, 99(22): 9605-9615. |
43 | Zimmermann W, Billig S. Enzymes for the biofunctionalization of poly(ethylene terephthalate)[J]. Advances in Biochemical Engineering/Biotechnology, 2011,125: 97-120. |
44 | Guebitz G M, Cavaco-Paulo A. Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers[J]. Trends in Biotechnology, 2008, 26(1): 32-38. |
45 | Tournier V, Topham C M, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580(7802): 216-219. |
46 | Abou-Zeid D M, Müller R J, Deckwer W D. Degradation of natural and synthetic polyesters under anaerobic conditions[J]. Journal of Biotechnology, 2001, 86(2): 113-126. |
47 | Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis[J]. Journal of Applied Microbiology, 2005, 98(5): 1093-1100. |
48 | Usha R, Sangeetha T, Palaniswamy M. Screening of polyethylene degrading microorganisms from garbage soil [J]. Libyan Agriculture Research Center Journal International, 2011, 2(4): 200-204. |
49 | Pramila R. Brevibacillus parabrevis, Acinetobacter baumannii and Pseudomonas citronellolis―potential candidates for biodegradation of low density polyethylene (LDPE)[J]. Journal of Bacteriology Research, 2012, 4(1): 9-14. |
50 | García-Hidalgo J, Hormigo D, Arroyo M, et al. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions[J]. PLoS One, 2013, 8(8): e71699. |
51 | Bhatia M, Girdhar A, Tiwari A, et al. Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach[J]. Springerplus, 2014, 3: 497. |
52 | Abdel-Motaal F F, El-Sayed M A, El-Zayat S A, et al. Biodegradation of poly (ε-caprolactone)(PCL) film and foam plastic by Pseudozyma japonica sp. nov., a novel cutinolytic ustilaginomycetous yeast species[J]. 3 Biotech, 2014, 4(5): 507-512. |
53 | Das M P, Kumar S. An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens[J]. 3 Biotech, 2015, 5(1): 81-86. |
54 | Zumstein M T, Schintlmeister A, Nelson T F, et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass[J]. Science Advances, 2018, 4(7): eaas9024. |
55 | Wächtershäuser G. Before enzymes and templates: theory of surface metabolism[J]. Microbiology Reviews, 1988, 52(4): 452-484. |
56 | Marshall K C. Biofilms: an overview of bacterial adhesion, activity, and control at surfaces[J]. American Society for Microbiology News, 1992, 58: 202-207. |
57 | Chinaglia S, Tosin M, Degli-Innocenti F. Biodegradation rate of biodegradable plastics at molecular level[J]. Polymer Degradation and Stability, 2018, 147: 237-244. |
58 | Gan Z H, Kuwabara K, Abe H, et al. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films[J]. Polymer Degradation and Stability, 2005, 87(1): 191-199. |
59 | Gu J D. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances[J]. International Biodeterioration & Biodegradation, 2003, 52(2): 69-91. |
60 | Svoboda P, Dvorackova M, Svobodova D. Influence of biodegradation on crystallization of poly (butylene adipate-co-terephthalate)[J]. Polymers for Advanced Technologies, 2019, 30(3): 552-562. |
61 | Tokiwa Y, Calabia B P. Biodegradability and biodegradation of poly(lactide)[J]. Applied Microbiology and Biotechnology, 2006, 72(2): 244-251. |
62 | Satti S M, Shah A A. Polyester-based biodegradable plastics: an approach towards sustainable development[J]. Letters in Applied Microbiology, 2020, 70(6): 413-430. |
63 | Marten E, Müller R J, Deckwer W D. Studies on the enzymatic hydrolysis of polyesters (II): Aliphatic-aromatic copolyesters[J]. Polymer Degradation and Stability, 2005, 88(3): 371-381. |
64 | Muroi F, Tachibana Y, Kobayashi Y, et al. Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth[J]. Polymer Degradation and Stability, 2016, 129: 338-346. |
65 | Kim D Y, Kim H C, Kim S Y, et al. Molecular characterization of extracellular medium-chain-length poly(3-hydroxyalkanoate) depolymerase genes from Pseudomonas alcaligenes strains[J]. Journal of Microbiology (Seoul, Korea), 2005, 43(3): 285-294. |
66 | Rydz J, Sikorska W, Kyulavska M, et al. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development[J]. International Journal of Molecular Sciences, 2014, 16(1): 564-596. |
67 | Calabia B P, Tokiwa Y. Microbial degradation of poly(d-3-hydroxybutyrate) by a new thermophilic Streptomyces isolate[J]. Biotechnology Letters, 2004, 26(1): 15-19. |
68 | Klingbeil B, Kroppenstedt R M, Jendrossek D. Taxonomic identification of Streptomyces exfoliatus K10 and characterization of its poly(3-hydroxybutyrate) depolymerase gene[J]. FEMS Microbiology Letters, 1996, 142(2/3): 215-221. |
69 | Chen D R, Bei J Z, Wang S G. Polycaprolactone microparticles and their biodegradation[J]. Polymer Degradation and Stability, 2000, 67(3): 455-459. |
70 | 王格侠, 黄丹, 张维, 等. 典型生物降解聚酯在海水中的降解性能[J]. 功能高分子学报, 2020, 33(5):492-499. |
Wang G X, Huang D, Zhang W, et al. Degradation performance of typical biodegradable polyesters in seawater[J]. Journal of Functional Polymers, 2020, 33(5):492-499. | |
71 | Hayashi T, Kanai H, Hayashi T. Enzymatic degradation of poly(ε-caprolactone) fibers in vitro[J]. Polymer Journal, 2001, 33(1): 38-41. |
72 | Herzog K, Müller R J, Deckwer W D. Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases[J]. Polymer Degradation and Stability, 2006, 91(10): 2486-2498. |
73 | Tokiwa Y, Suzuki T, Takeda K. Two types of lipases in hydrolysis of polyester[J]. Agricultural and Biological Chemistry, 1988, 52(8): 1937-1943. |
74 | Jendrossek D, Schirmer A, Schlegel H G. Biodegradation of polyhydroxyalkanoic acids[J]. Applied Microbiology and Biotechnology, 1996, 46(5/6): 451-463. |
75 | Massardier-Nageotte V, Pestre C, Cruard-Pradet T, et al. Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization[J]. Polymer Degradation and Stability, 2006, 91(3): 620-627. |
76 | Santos M, Gangoiti J, Llama M J, et al. Poly(3-hydroxyoctanoate) depolymerase from Pseudomonas fluorescens GK13: catalysis of ester-forming reactions in non-aqueous media[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 77: 81-86. |
77 | Sulaiman S, Yamato S, Kanaya E, et al. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach[J]. Applied and Environmental Microbiology, 2012, 78(5): 1556-1562. |
78 | Muroi F, Tachibana Y, Soulenthone P, et al. Characterization of a poly(butylene adipate-co-terephthalate) hydrolase from the aerobic mesophilic bacterium Bacillus pumilus[J]. Polymer Degradation and Stability, 2017, 137: 11-22. |
79 | Kleeberg I, Welzel K, VandenHeuvel J, et al. Characterization of a new extracellular hydrolase from thermobifida fusca degrading aliphatic-aromatic copolyesters[J]. Biomacromolecules, 2005, 6(1): 262-270. |
80 | Chen Z Z, Wang Y Y, Cheng Y Y, et al. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase[J]. Science of the Total Environment, 2020, 709: 136138. |
81 | Griswold K E, Mahmood N A, Iverson B L, et al. Effects of codon usage versus putative 5'-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm[J]. Protein Expression and Purification, 2003, 27(1): 134-142. |
82 | Shirke A N, White C, Englaender J A, et al. Stabilizing leaf and branch compost cutinase (LCC) with glycosylation: mechanism and effect on PET hydrolysis[J]. Biochemistry, 2018, 57(7): 1190-1200. |
83 | Herrero Acero E, Ribitsch D, Steinkellner G, et al. Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida[J]. Macromolecules, 2011, 44(12): 4632-4640. |
84 | Martínez V, de la Peña F, García-Hidalgo J, et al. Identification and biochemical evidence of a medium-chain-length polyhydroxyalkanoate depolymerase in the Bdellovibrio bacteriovorus predatory hydrolytic arsenal[J]. Applied and Environmental Microbiology, 2012, 78(17): 6017-6026. |
85 | Tokiwa Y, Ando T, Suzuki T, et al. Biodegradation of synthetic polymers containing ester bonds[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 1990: 136-148. |
86 | Tribedi P, Sil A K. Low-density polyethylene degradation by Pseudomonas sp. AKS2 biofilm[J]. Environmental Science and Pollution Research, 2013, 20(6): 4146-4153. |
87 | Shinozaki Y, Morita T, Cao X H, et al. Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization[J]. Applied Microbiology and Biotechnology, 2013, 97(7): 2951-2959. |
88 | Benedict C V, Cook W J, Jarrett P, et al. Fungal degradation of polycaprolactones[J]. Journal of Applied Polymer Science, 1983, 28(1): 327-334. |
89 | Li F, Yu D, Lin X M, et al. Biodegradation of poly(ε-caprolactone) (PCL) by a new Penicillium oxalicum strain DSYD05-1[J]. World Journal of Microbiology and Biotechnology, 2012, 28(10): 2929-2935. |
90 | Abou-Zeid D M, Müller R J, Deckwer W D. Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms[J]. Biomacromolecules, 2004, 5(5): 1687-1697. |
91 | Chen G Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry[J]. Chemical Society Reviews, 2009, 38(8): 2434-2446. |
92 | Sznajder A, Jendrossek D. Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules[J]. Applied Microbiology and Biotechnology, 2011, 89(5): 1487-1495. |
93 | Torres A, Li S M, Roussos S, et al. Screening of microorganisms for biodegradation of poly(lactic-acid) and lactic acid-containing polymers[J]. Applied and Environmental Microbiology, 1996, 62(7): 2393-2397. |
94 | Tomita K, Kuroki Y, Nagai K. Isolation of thermophiles degrading poly(L-lactic acid)[J]. Journal of Bioscience and Bioengineering, 1999, 87(6): 752-755. |
95 | Pranamuda H, Tokiwa Y. Degradation of poly(L-lactide) by strains belonging to genus Amycolatopsis[J]. Biotechnology Letters, 1999, 21(10): 901-905. |
96 | Fukuzaki H, Yoshida M, Asano M, et al. Synthesis of copoly(D, I-lactic acid) with relatively low molecular weight and in vitro degradation[J]. European Polymer Journal, 1989, 25(10): 1019-1026. |
97 | Hu X P, Thumarat U, Zhang X, et al. Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119[J]. Applied Microbiology and Biotechnology, 2010, 87(2): 771-779. |
98 | Nakajima-Kambe T, Edwinoliver N G, Maeda H, et al. Purification, cloning and expression of an Aspergillus Niger lipase for degradation of poly(lactic acid) and poly(ε-caprolactone)[J]. Polymer Degradation and Stability, 2012, 97(2): 139-144. |
99 | Nakasaki K, Matsuura H, Tanaka H, et al. Synergy of two thermophiles enables decomposition of poly-ɛ-caprolactone under composting conditions[J]. FEMS Microbiology Ecology, 2006, 58(3): 373-383. |
100 | Nawaz A, Hasan F, Shah A A. Degradation of poly(ɛ-caprolactone)(PCL) by a newly isolated Brevundimonas sp. strain MRL- AN1 from soil[J]. FEMS Microbiology Letters, 2015, 362(1): 1-7. |
101 | Masaki K, Kamini N R, Ikeda H, et al. Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics[J]. Applied and Environmental Microbiology, 2005, 71(11): 7548-7550. |
102 | Briassoulis D, Dejean C, Picuno P. Critical review of norms and standards for biodegradable agricultural plastics (part Ⅱ): Composting[J]. Journal of Polymers and the Environment, 2010, 18(3): 364-383. |
103 | Ohtaki A, Akakura N, Nakasaki K. Effects of temperature and inoculum on the degradability of poly-ε-caprolactone during composting[J]. Polymer Degradation and Stability, 1998, 62(2): 279-284. |
[1] | 赵亚静, 胡激江, 介素云, 李伯耿. HTPB引入方式对不饱和树脂改性效果的影响[J]. 化工学报, 2023, 74(2): 883-892. |
[2] | 万丽, 梁德青. 一种可生物降解水合物动力学抑制剂的研究[J]. 化工学报, 2022, 73(2): 894-903. |
[3] | 张雅曼, 邢玉林, 蒋杰, 赵玲, 奚桢浩. PET/PEG共聚酯连续熔融终缩聚过程两相稳态模型分析[J]. 化工学报, 2022, 73(10): 4722-4733. |
[4] | 李超凡, 温玉娟, 曹楠, 孙东, 宋晓明, 杨悦锁. 耐低温对硝基苯酚降解菌的降解动力学研究[J]. 化工学报, 2021, 72(3): 1692-1701. |
[5] | 王松林, 吴海强, 姜冰雪, 赵志超, 欧阳杰, 徐志玉, 徐锦龙, 刘平伟, 王文俊. 聚酯链结构定制及其构效关系[J]. 化工学报, 2021, 72(2): 852-862. |
[6] | 邹文奇, 陈通, 叶海木, 张淑景, 徐军, 郭宝华. 可生物降解聚酯的制备及性能研究进展[J]. 化工学报, 2021, 72(12): 6216-6231. |
[7] | 高宏娟,任伟民. 内酯和环氧烷烃共聚合成聚酯-聚醚共聚物的研究进展[J]. 化工学报, 2021, 72(1): 440-451. |
[8] | 常诚, 冯连芳, 顾雪萍, 陈曦, 张才亮. 基于分子量分布指标的聚酯生产过程模拟方法[J]. 化工学报, 2020, 71(2): 708-714. |
[9] | 郭妍婷, 尹垚骐, 黄雪, 陈曼, 冯光炷. 基于二聚脂肪酸改性苯乙烯聚酯树脂的合成及性能[J]. 化工学报, 2017, 68(S1): 266-275. |
[10] | 黄山, 朱延安, 陈荣华, 瞿金清. 以缩水甘油醚为核的星形羟基聚酯的合成及其涂膜性能[J]. 化工学报, 2016, 67(11): 4878-4884. |
[11] | 王艺, 陈川, 张子峰, 任南琪. 甲基硅氧烷在污水处理厂中的环境行为[J]. 化工学报, 2016, 67(1): 83-88. |
[12] | 吕闪闪,谭海彦,左迎峰,顾继友,张彦华. 生物可降解聚乳酸基复合材料研究进展[J]. 化工进展, 2014, 33(11): 2975-2981. |
[13] | 刘英杰1,贾晓强1,2,3,闻建平1,2,3,班睿1. 混合菌群合成聚羟基脂肪酸酯研究进展[J]. 化工进展, 2014, 33(10): 2729-2734. |
[14] | 张蕤1,2,陆宁1,朱清1,苏天翔1,王坚剑1. 可生物降解聚(3-羟基丁酸酯-co-4-羟基丁酸酯)/层状?-磷酸锆纳米复合材料的制备及性能[J]. 化工进展, 2014, 33(10): 2716-2721. |
[15] | 吕陈秋,顾爱军,张宇航,谢振威. 基于Aspen Polymer的聚酯聚合反应研究及流程模拟[J]. 化工进展, 2014, 33(05): 1086-1092. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 226
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 547
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||