化工学报 ›› 2021, Vol. 72 ›› Issue (2): 852-862.DOI: 10.11949/0438-1157.20201101
王松林1,2(),吴海强1,2(),姜冰雪1,赵志超2,欧阳杰2,徐志玉2,徐锦龙2,刘平伟1,3,王文俊1,3()
收稿日期:
2020-08-03
修回日期:
2020-11-26
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
吴海强,王文俊
作者简介:
王松林(1970—),男,博士研究生,基金资助:
WANG Songlin1,2(),WU Haiqiang1,2(),JIANG Bingxue1,ZHAO Zhichao2,OUYANG Jie2,XU Zhiyu2,XU Jinlong2,LIU Pingwei1,3,WANG Wenjun1,3()
Received:
2020-08-03
Revised:
2020-11-26
Online:
2021-02-05
Published:
2021-02-05
Contact:
WU Haiqiang,WANG Wenjun
摘要:
聚酯材料的物理性能与可生物降解性为其聚集态结构所决定,而聚合物链的化学组成、序列和拓扑结构又是决定聚合物聚集态结构的最关键因素。为此,本文从基于聚合过程调控的聚酯链结构定制出发,总结了嵌段、长支链、梳状、星型、超支化与树枝状结构聚酯的定制方法;评述了链结构与聚酯热与力学性能之间的构效关系,探讨了链结构对聚酯降解性能的影响规律,前人的研究表明共聚物嵌段长短影响着结晶聚集态结构,长支链的存在有助于聚酯结晶温度与结晶度的提高;链的结晶能力、链长及亲疏水性决定了聚酯的降解性能。文中还对高性能可生物降解聚酯材料的开发进行了展望。
中图分类号:
王松林, 吴海强, 姜冰雪, 赵志超, 欧阳杰, 徐志玉, 徐锦龙, 刘平伟, 王文俊. 聚酯链结构定制及其构效关系[J]. 化工学报, 2021, 72(2): 852-862.
WANG Songlin, WU Haiqiang, JIANG Bingxue, ZHAO Zhichao, OUYANG Jie, XU Zhiyu, XU Jinlong, LIU Pingwei, WANG Wenjun. Tailoring chain structures of polyesters and their effect on physical and degradation properties[J]. CIESC Journal, 2021, 72(2): 852-862.
支化剂用量/% | 冷却速度3℃/min | 冷却速度30℃/min | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tc /℃ | Tg /℃ | Tm /℃ | ΔHm/(J/g) | Xc /% | Tc /℃ | Tg /℃ | Tm /℃ | ΔHm (J/g) | Xc /% | |
0 | 100.0 | 61.3 | 169.1 | 29.9 | 31.9 | — | 60.5 | 163.5/169.2 | 36.1 | 2.2 |
0.1 | 116.3 | 60.4 | 167.8 | 37.1 | 39.6 | — | 60.2 | 160.8/167.7 | 35.7 | 4.6 |
0.3 | 130.2 | 60.8 | 166.5 | 37.9 | 40.4 | 96.3 | 61.0 | 165.8 | 35.9 | 17.8 |
0.5 | 134.4 | 60.5 | 165.6 | 40.0 | 42.7 | 103.9 | 60.0 | 160.8/165.5 | 34.8 | 34.0 |
0.7 | 132.6 | 60.7 | 165.1 | 39.8 | 42.5 | 102.4 | 60.4 | 160.6/165.3 | 33.9 | 31.6 |
表1 不同支化剂用量的长支链PLA的热性能[64]
Table 1 Thermal properties of long chain branched PLAs synthesized at various concentrations of COP[64]
支化剂用量/% | 冷却速度3℃/min | 冷却速度30℃/min | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Tc /℃ | Tg /℃ | Tm /℃ | ΔHm/(J/g) | Xc /% | Tc /℃ | Tg /℃ | Tm /℃ | ΔHm (J/g) | Xc /% | |
0 | 100.0 | 61.3 | 169.1 | 29.9 | 31.9 | — | 60.5 | 163.5/169.2 | 36.1 | 2.2 |
0.1 | 116.3 | 60.4 | 167.8 | 37.1 | 39.6 | — | 60.2 | 160.8/167.7 | 35.7 | 4.6 |
0.3 | 130.2 | 60.8 | 166.5 | 37.9 | 40.4 | 96.3 | 61.0 | 165.8 | 35.9 | 17.8 |
0.5 | 134.4 | 60.5 | 165.6 | 40.0 | 42.7 | 103.9 | 60.0 | 160.8/165.5 | 34.8 | 34.0 |
0.7 | 132.6 | 60.7 | 165.1 | 39.8 | 42.5 | 102.4 | 60.4 | 160.6/165.3 | 33.9 | 31.6 |
1 | Joo S, Cho I J, Seo H, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9(1): 382. |
2 |
Zhu X, Ran W, Teng J, et al. Microplastic pollution in nearshore sediment from the Bohai sea coastline[J]. Bulletin of Environmental Contamination and Toxicology, 2020, doi: 10.1007/s00128-020-02866-1.
DOI |
3 | Elsawy M A, Kim K, Park J, et al. Hydrolytic degradation of polylactic acid (PLA) and its composites[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1346-1352. |
4 | Nofar M, Sacligil D, Carreau P J, et al. Poly (lactic acid) blends: processing, properties and applications[J]. International Journal of Biological Macromolecules, 2019, 125: 307-360. |
5 | Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, et al. Poly(lactic acid)-mass production, processing, industrial applications, and end of life[J]. Advanced Drug Delivery Reviews, 2016, 107: 333-366. |
6 | Asghari F, Samiei M, Adibkia K, et al. Biodegradable and biocompatible polymers for tissue engineering application: a review[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(2): 185-192. |
7 | Mhiri S, Mignard N, Abid M, et al. Thermally reversible and biodegradable polyglycolic-acid-based networks[J]. European Polymer Journal, 2017, 88: 292-310. |
8 | 李义, 张旭, 黄威, 等. 聚羟基脂肪酸酯(PHA)及其共混纤维研究进展[J]. 生物工程学报, 2020, 36(5): 829-837. |
Li Y, Zhang X, Huang W, et al. Research progress in polyhydroxyalkanoates (PHA) and their blend fibers[J]. Chinese Journal of Biotechnology, 2020, 36(5): 829-837. | |
9 | Dilkes-Hoffman L S, Lant P A, Laycock B, et al. The rate of biodegradation of PHA bioplastics in the marine environment: a meta-study[J]. Marine Pollution Bulletin, 2019, 142: 15-24. |
10 | Bartnikowski M, Dargaville T R, Ivanovski S, et al. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment[J]. Progress in Polymer Science, 2019, 96: 1-20. |
11 | Dwivedi R, Kumar S, Pandey R, et al. Polycaprolactone as biomaterial for bone scaffolds: review of literature[J]. Journal of Oral Biology and Craniofacial Research, 2020, 10(1): 381-388. |
12 | Gigli M, Fabbri M, Lotti N, et al. Poly(butylene succinate)-based polyesters for biomedical applications: a review[J]. European Polymer Journal, 2016, 75: 431-460. |
13 | 李发学. 成纤用生物降解性聚丁二酸丁二醇-共-对苯二甲酸丁二醇酯(PBST)的合成及结构性能研究[D]. 上海: 东华大学, 2006. |
Li F X. Synthesis and structural properties of biodegradable polybutanediol-co-butyl terephthalate (PBST) for fiber formation[D]. Shanghai: Donghua University, 2006. | |
14 | Li J, Lai L, Wu L, et al. Enhancement of water vapor barrier properties of biodegradable poly(butylene adipate-co-terephthalate) films with highly oriented organomontmorillonite[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6654-6662. |
15 | Lai L, Wang S, Li J, et al. Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage[J]. Carbohydr. Polym., 2020, 247: 116687. |
16 | Haider T P, Völker C, Kramm J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie International Edition, 2019, 58(1): 50-62. |
17 | Ahmed T, Shahid M, Azeem F, et al. Biodegradation of plastics: current scenario and future prospects for environmental safety[J]. Environmental Science and Pollution Research, 2018, 25(8): 7287-7298. |
18 | 罗英武. 复杂聚合物链结构的可控制备与新材料[J]. 化工学报, 2013, 64(2): 415-426. |
Luo Y W. Controllable preparation of complex polymer chains and novel materials[J]. CIESC Journal, 2013, 64(2): 415-426. | |
19 | Geyer B, Röhner S, Lorenz G, et al. Synthesis of ethylene terephthalate and ethylene naphthalate (PET-PEN) block-co-polyesters with defined surface qualities by tailoring segment composition[J]. Journal of Applied Polymer Science, 2014, 131(17): 40731. |
20 | 李连贵, 付志鹏, 李明超, 等. 聚对苯二甲酸二甲酯/聚2, 5-呋喃二甲酸二甲酯嵌段聚酯的合成与表征[J]. 应用化学, 2017, 34(1): 54-59. |
Li L G, Fu Z P, Li M C, et al. Synthesis and characterization of polyethylene terephthalate-b-poly(ethylene 2,5-furandicarboxylate) block polyester[J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 54-59. | |
21 | Inata H, Matsumura S. Chain extenders for polyesters(Ⅲ): Addition‐type nitrogen‐containing chain extenders reactive with hydroxyl end groups of polyesters[J]. Journal of Applied Polymer Science, 1986, 32(4): 4581-4594. |
22 | Zhu Y, Radlauer M R, Schneiderman D K, et al. Multiblock polyesters demonstrating high elasticity and shape memory effects[J]. Macromolecules, 2018, 51(7): 2466-2475. |
23 | Cavallo D, Gardella L, Soda O, et al. Fully bio-renewable multiblocks copolymers of poly(lactide) and commercial fatty acid-based polyesters polyols: synthesis and characterization[J]. European Polymer Journal, 2016, 81: 247-256. |
24 | Yu I, Ebrahimi T, Hatzikiriakos S G, et al. Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts[J]. Dalton Transactions: an International Journal of Inorganic Chemistry, 2015, 44(32): 14248-14254. |
25 | 芦婷婷, 姜敏, 张强, 等. 运用1H-NMR和13C-NMR研究聚对苯二甲酸-2, 5-呋喃二甲酸乙二醇共聚酯(PEFT)的序列结构[J]. 分析化学, 2014, 42(8): 1117-1123. |
Lu T T, Jiang M, Zhang Q, et al. Sequence structures of poly(ethylene terephthalate-co-ethylene 2, 5-furandicarboxylate) via 1H-NMR and 13C-NMR[J]. Chinese Journal of Analytical Chemistry, 2014, 42(8): 1117-1123. | |
26 | 曹小玉, 李圆圆, 李跃, 等. 二异氰酸酯扩链聚2, 5-呋喃二甲酸乙二酯[J]. 高分子材料科学与工程, 2017, 33(1): 1-6. |
Cao X Y, Li Y Y, Li Y, et al. Chain extension of poly(ethylene 2, 5-furandicarboxylate) by diisocyanate[J]. Polymer Materials Science & Engineering, 2017, 33(1): 1-6. | |
27 | Pesetskii S S, Shevchenko V V, Koval V N. Effect of isocyanate chain extender on the structure and properties of the blends of poly(butylene terephthalate) and thermoplastic polyester elastomer[J]. Journal of Thermoplastic Composite Materials, 2016, 30(12): 1581-1602. |
28 | Zheng Y, Zhu P, Cheng F, et al. Preparation of waterborne elastic polyesters by chain extension with isophorone diisocyanate as a chain extender[J]. Journal of Applied Polymer Science, 2020, 137(10): 48453. |
29 | 段荣涛, 董雪, 李德福, 等. 含异山梨醇的全生物基PBS嵌段共聚酯的制备及性能[J]. 高分子学报, 2016, (1): 70-77. |
Duan R T, Dong X, Li D F, et al. Preparation and properties of bio-based PBS multiblock copolyesters containing isosorbide units[J]. Acta Polymerica Sinica, 2016, (1): 70-77. | |
30 | Wei Z, Che R, Shao S, et al. ABA triblock copolyesters composed of poly(l-lactide) A hard blocks: a comparative study of amorphous and crystalline aliphatic polyesters as B soft blocks[J]. Polymer Testing, 2020, 83: 106348. |
31 | Wang Y, Leng X, Wei Z, et al. ABA triblock copolyesters composed of poly(L-lactide) A hard blocks: comparison of amorphous and crystalline unsaturated aliphatic polyesters as B soft blocks[J]. Journal of Materials Science, 2020, 55(21): 9129-9143. |
32 | Leng X, Jin C, Zhou C, et al. ABA triblock copolyesters composed of poly(L-lactide) A hard blocks: long chain aliphatic polyesters as B soft midblocks[J]. Journal of Polymers and the Environment, 2020, 28(5): 1420-1430. |
33 | 孔睿. 一种新型全生物降解型嵌段共聚物PLLA-PBA-PLLA的合成及其性能研究[D]. 天津: 天津理工大学, 2019. |
Kong R. Synthesis and characterization of a new fully biodegradable block copolymer PLLA-PBA-PLLA [D]. Tianjin: Tianjin University of Technology, 2019. | |
34 | 胡晶, 王晶晶, 黄从树, 等. 丙交酯/己内酯聚酯共聚物在天然海水中水解行为研究[J]. 涂料工业, 2012, 42(3): 44-47. |
Hu J, Wang J J, Huang C S, et al. Research of hydrolysis process of copolyesters prepared from L-lactide and ε-caprolactone in seawater[J]. Paint & Coatings Industry, 2012, 42(3): 44-47. | |
35 | 胡晶. 聚己内酯/丙交酯聚酯共聚物的合成及性能研究[D]. 武汉: 武汉理工大学, 2012. |
Hu J. Synthesis and properties of polycaprolactone/lactide polyester copolymer[D]. Wuhan: Wuhan University of Technology, 2012. | |
36 | Matsubara K, Eda K, Ikutake Y, et al. Aluminum complex initiated copolymerization of lactones and DL-lactide to form crystalline gradient block copolymers containing stereoblock lactyl chains[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54(16): 2536-2544. |
37 | 姜利娟. 新型氮杂环卡宾催化ε-己内酯与L-丙交酯的均聚及嵌段共聚的研究[D]. 临汾: 山西师范大学, 2015. |
Jiang L J. Homo- and block copolymerizations of ε-caprolactone with L-lactide catalyzed by novel N-heterocyclic carbenes[D]. Linfen: Shanxi Normal University, 2015. | |
38 | Weng F, Li X, Wang Y, et al. Kinetics and modeling of ring-opening copolymerization of L-lactide and ε-caprolactone[J]. Macromolecular Reaction Engineering, 2015, 9(6): 535-544. |
39 | Stößer T, Williams C K. Selective polymerization catalysis from monomer mixtures: using a commercial Cr-Salen catalyst to access ABA block polyesters[J]. Angewandte Chemie International Edition, 2018, 57(21): 6337-6341. |
40 | 李娟, 杜凡凡, 冯锐, 等. 锌配合物催化ε-己内酯/L-丙交酯共聚制备环状和线形嵌段共聚酯[J]. 高等学校化学学报, 2018, 39(6): 1297-1304. |
Li J, Du F F, Feng R, et al. Synthesis of cyclic and linear block copolyesters via ring-opening copolymerization of ε-caprolatone and L-lactide catalyzed by zinc complex[J]. Chemical Journal of Chinese Universities, 2018, 39(6): 1297-1304. | |
41 | Liu J, Ye L, Zhao X. Preparation of long-chain branched poly(ethylene terephthalate): molecular entanglement structure and toughening mechanism[J]. Polymer Engineering and Science, 2019, 59(6): 1190-1198. |
42 | Saeed H A M, Eltahir Y A, Xia Y, et al. Properties of recycled poly(ethylene terephthalate) (PET)/hyperbranched polyester (HBPET) composite fibers[J]. The Journal of the Textile Institute, 2015, 106(6): 601-610. |
43 | Kruse M, Wagner M H. Rheological and molecular characterization of long-chain branched poly(ethylene terephthalate)[J]. Rheologica Acta, 2017, 56(11): 887-904. |
44 | Arnaud S P, Wu L, Wong Chang M, et al. New bio-based monomers: tuneable polyester properties using branched diols from biomass[J]. Faraday Discussions, 2017, 202: 61-77. |
45 | Kim E K, Bae J S, Im S S, et al. Preparation and properties of branched polybutylenesuccinate[J]. Journal of Applied Polymer Science, 2001, 80(9): 1388-1394. |
46 | Jikei M, Terata C, Matsumoto K. Synthesis and properties of long-chain branched poly(l-lactide)s by self-polycondensation of AB2 macromonomers[J]. Materials Today Communications, 2019, 20: 100528. |
47 | Wang G, Guo B, Li R. Synthesis, characterization, and properties of long‐chain branched poly(butylene succinate)[J]. Journal of Applied Polymer Science, 2012, 124(2): 1271-1280. |
48 | Härth M, Kaschta J, Schubert D W. Shear and elongational flow properties of long-chain branched poly(ethylene terephthalates) and correlations to their molecular structure[J]. Macromolecules, 2014, 47(13): 4471-4478. |
49 | Martínez-Mercado E, Ruiz-Treviño F A, González-Montiel A, et al. Long chain branched structures of polylactic acid through reactive extrusion with styrene-acrylic copolymers bearing epoxy functional groups[J]. Journal of Polymer Research, 2019, 26(11): 1-10. |
50 | Lu J, Wu L, Li B G. Long chain branched poly(butylene succinate‐co‐terephthalate) copolyesters using pentaerythritol as branching agent: synthesis, thermo‐mechanical, and rheological properties[J]. Journal of Applied Polymer Science, 2017, 134(9): 44544. |
51 | Yu Z, Liu L. Biodegradable poly(vinyl alcohol)-graft-poly(ɛ-caprolactone) comb-like polyester: microwave synthesis and its characterization[J]. Journal of Applied Polymer Science, 2007, 104(6): 3973-3979. |
52 | Ge W, Guo Y, Zhong H, et al. Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/ε-caprolactone/p-dioxanone)[J]. Cellulose, 2015, 22(4): 2365-2374. |
53 | Cameron D J, Shaver M P. Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology[J]. Chem. Soc. Rev., 2011, 40(3): 1761-1776. |
54 | Bednarek M. Branched aliphatic polyesters by ring-opening (co)polymerization[J]. Progress in Polymer Science, 2016, 58: 27-58. |
55 | Jahandideh A, Muthukumarappan K. Star-shaped lactic acid based systems and their thermosetting resins: synthesis, characterization, potential opportunities and drawbacks[J]. European Polymer Journal, 2017, 87: 360-379. |
56 | Kasegaonkar A S, Barqawi H, Binder W H. Synthesis and crystallization of star‐shaped photocleavable poly(ε‐caprolactone)s[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53(5): 642-649. |
57 | Miao Y, Rousseau C, Mortreux A, et al. Access to new carbohydrate-functionalized polylactides via organocatalyzed ring-opening polymerization[J]. Polymer, 2011, 52(22): 5018-5026. |
58 | Liang L, Long J, Li G. Lipase-catalyzed synthesis of hyperbranched polyester improved by autocatalytic prepolymerization process[J]. Journal of Applied Polymer Science, 2019, 136(12): 47221. |
59 | Shan P, Chen N, Hao C, et al. Facile and solvent-free synthesis of a novel bio-based hyperbranched polyester with excellent low-temperature flexibility and thermal stability[J]. Industrial Crops and Products, 2020, 148: 112302. |
60 | Al Samman M, Radke W, Khalyavina A, et al. Retention behavior of linear, branched, and hyperbranched polyesters in interaction liquid chromatography[J]. Macromolecules, 2010, 43(7): 3215-3220. |
61 | Firdaus S, Geisler M, Friedel P, et al. Glyco-pseudodendrimers on a polyester basis: synthesis and investigation of protein-pseudodendrimer interaction[J]. Macromolecular Rapid Communications, 2018, 39(16): 1800364. |
62 | Wu B, Zeng X, Wu L, et al. Nucleating agent‐containing P(LLA‐mb‐BSA) multi‐block copolymers with balanced mechanical properties[J]. Journal of Applied Polymer Science, 2017, 134(18): 44777. |
63 | 吴彬霜. 含聚乳酸硬段的可生物降解多嵌段共聚物的合成及改性[D]. 杭州: 浙江大学, 2015. |
Wu B S. Synthesis and modification of biodegradable multi-block copolymers containing polylactic acid hard segments[D]. Hangzhou: Zhejiang University, 2015. | |
64 | Li P, Zhang W, Zhu X, et al. Simultaneous improvement of the foaming property and heat resistance in polylactide via one-step branching reaction initiated by cyclic organic peroxide[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2934-2945. |
65 | Ren Y, Wei Z, Leng X, et al. Relationships between architectures and properties of highly branched polymers: the cases of amorphous poly(trimethylene carbonate) and crystalline poly(ε-caprolactone)[J]. The Journal of Physical Chemistry B, 2016, 120(17): 4078-4090. |
66 | 冷雪菲, 王艳色, 任莹莹, 等. 支化结构脂肪族聚酯的研究进展[J]. 高分子通报, 2019, (2): 16-22. |
Leng X F, Wang Y S, Ren Y Y, et al. Research progress on branched aliphatic polyesters[J]. Chinese Polymer Bulletin, 2019, (2): 16-22. | |
67 | Kim E S, Kim B C, Kim S H. Structural effect of linear and star-shaped poly(L-lactic acid) on physical properties[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(6): 939-946. |
68 | Tsuji H, Miyase T, Tezuka Y, et al. Physical properties, crystallization, and spherulite growth of linear and 3-arm poly(l-lactide)s[J]. Biomacromolecules, 2005, 6(1): 244-254. |
69 | Bai H, Huang C, Xiu H, et al. Enhancing mechanical performance of polylactide by tailoring crystal morphology and lamellae orientation with the aid of nucleating agent[J]. Polymer, 2014, 55(26): 6924-6934. |
70 | Zhao Y, Cai Q, Jiang J, et al. Synthesis and thermal properties of novel star-shaped poly(L-lactide)s with starburst PAMAM-OH dendrimer macroinitiator[J]. Polymer, 2002, 43(22): 5819-5825. |
71 | Ren J M, Mckenzie T G, Fu Q, et al. Star polymers[J]. Chemical Reviews, 2016, 116(12): 6743-6836. |
72 | Fan Y, Nishida H, Shirai Y, et al. Racemization on thermal degradation of poly(L-lactide) with calcium salt end structure[J]. Polymer Degradation and Stability, 2003, 80(3): 503-511. |
73 | Wang C, Li H, Zhao X. Ring opening polymerization of L-lactide initiated by creatinine[J]. Biomaterials, 2004, 25(27): 5797-5801. |
74 | Middleton J C, Tipton A J. Synthetic biodegradable polymers as orthopedic devices[J]. Biomaterials, 2000, 21(23): 2335-2346. |
75 | Zuideveld M, Gottschalk C, Kropfinger H, et al. Miscibility and properties of linear poly(L-lactide)/branched poly( L-lactide) copolyester blends[J]. Polymer, 2006, 47(11): 3740-3746. |
76 | Lim L T, Auras R, Rubino M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science, 2008, 33(8): 820-852. |
77 | Michalski A, Brzezinski M, Lapienis G, et al. Star-shaped and branched polylactides: synthesis, characterization, and properties[J]. Progress in Polymer Science, 2019, 89: 159-212. |
78 | Ayyoob M, Lee S, Kim Y J. Well-defined high molecular weight polyglycolide-b-poly(L-)lactide-b-polyglycolide triblock copolymers: synthesis, characterization and microstructural analysis[J]. Journal of Polymer Research, 2020, 27(5): 109. |
79 | Jiang R, Chen Y, Yao S, et al. Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction[J]. Polymer, 2019, 179: 121628. |
80 | Liu Q, Tian M, Ding T, et al. Preparation and characterization of a biodegradable polyester elastomer with thermal processing abilities[J]. Journal of Applied Polymer Science, 2005, 98(5): 2033-2041. |
81 | Salomez M, George M, Fabre P, et al. A comparative study of degradation mechanisms of PHBV and PBSA under laboratory-scale composting conditions[J]. Polymer Degradation and Stability, 2019, 167: 102-113. |
82 | Samami H, Pan J. A constitutive law for degrading bioresorbable polymers[J]. J. Mech. Behav. Biomed. Mater., 2016, 59: 430-445. |
83 | Di Lorenzo M L, Synthesis Androsch R, Structure and Properties of Poly(lactic acid) [M]. Springer International Publishing AG, 2018: 119-151. |
84 | Nevoralová M, Koutný M, Ujčić A, et al. Structure characterization and biodegradation rate of poly(ε-caprolactone)/starch blends[J]. Frontiers in Materials, 2020, 7: 141. |
85 | Mueller R. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling[J]. Process Biochemistry, 2006, 41(10): 2124-2128. |
86 | Ren Y, Hu J, Yang M, et al. Biodegradation behavior of poly (lactic acid) (PLA), poly (butylene adipate-co-terephthalate) (PBAT), and their blends under digested sludge conditions[J]. Journal of Polymers and the Environment, 2019, 27(12): 2784-2792. |
87 | Saadi Z, Cesar G, Bewa H, et al. Fungal degradation of poly(butylene adipate-co-terephthalate) in soil and in compost[J]. Journal of Polymers and the Environment, 2013, 21(4): 893-901. |
88 | Zumstein M T, Schintlmeister A, Nelson T F, et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass[J]. Science Advances, 2018, 4(7): eaas9024. |
89 | 邓冰锋, 黄从树, 王晶晶, 等. 己内酯/乙交酯/丙交酯三元嵌段聚酯共聚物的合成与性能研究[J]. 涂料工业, 2017, 47(1): 6-11. |
Deng B F, Huang C S, Wang J J, et al. Synthesis and properties of triblock copolyester of caprolactone/glycolide/lactide[J]. Paint & Coatings Industry, 2017, 47(1): 6-11. | |
90 | Arias V, Olsén P, Odelius K, et al. Forecasting linear aliphatic copolyester degradation through modular block design[J]. Polymer Degradation and Stability, 2016, 130: 58-67. |
91 | Choinska E, Muroya T, Swieszkowski W, et al. Influence of macromolecular structure of novel 2- and 4-armed polylactides on their physicochemical properties and in vitro degradation process[J]. Journal of Polymer Research, 2016, 23(7): 1-11. |
92 | Tsuji H, Yamamoto J. Hydrolytic degradation and thermal properties of linear 1-arm and 2-arm poly(DL-lactic acid)s: effects of coinitiator-induced molecular structural difference[J]. Polymer Degradation and Stability, 2011, 96(12): 2229-2236. |
93 | Yuan W, Zhu L, Huang X, et al. Synthesis, characterization and degradation of hexa-armed star-shaped poly(L-lactide)s and poly(D, L-lactide)s initiated with hydroxyl-terminated cyclotriphosphazene[J]. Polymer degradation and stability, 2005, 87(3): 503-509. |
94 | de Jong S J, Arias E R, Rijkers D T S, et al. New insights into the hydrolytic degradation of poly(lactic acid): participation of the alcohol terminus[J]. Polymer, 2001, 42(7): 2795-2802. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[4] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[5] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[6] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[7] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[8] | 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817. |
[9] | 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826. |
[10] | 刘海芹, 李博文, 凌喆, 刘亮, 俞娟, 范一民, 勇强. 羟基-炔点击化学改性半乳甘露聚糖薄膜的制备及性能研究[J]. 化工学报, 2023, 74(3): 1370-1378. |
[11] | 王帅, 杨富凯, 徐新宇. 阻燃型全生物基多元醇聚氨酯泡沫的制备及性能研究[J]. 化工学报, 2023, 74(3): 1399-1408. |
[12] | 赵亚静, 胡激江, 介素云, 李伯耿. HTPB引入方式对不饱和树脂改性效果的影响[J]. 化工学报, 2023, 74(2): 883-892. |
[13] | 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510. |
[14] | 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499. |
[15] | 谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||